Get the const-new field from a simpadd0-gin.
(simpadd0-gin->const-new x) → const-new
This is an ordinary field accessor created by fty::defprod.
Function:
(defun simpadd0-gin->const-new$inline (x) (declare (xargs :guard (simpadd0-ginp x))) (declare (xargs :guard t)) (let ((__function__ 'simpadd0-gin->const-new)) (declare (ignorable __function__)) (mbe :logic (b* ((x (and t x))) (acl2::symbol-fix (cdr (std::da-nth 0 x)))) :exec (cdr (std::da-nth 0 x)))))
Theorem:
(defthm symbolp-of-simpadd0-gin->const-new (b* ((const-new (simpadd0-gin->const-new$inline x))) (symbolp const-new)) :rule-classes :rewrite)
Theorem:
(defthm simpadd0-gin->const-new$inline-of-simpadd0-gin-fix-x (equal (simpadd0-gin->const-new$inline (simpadd0-gin-fix x)) (simpadd0-gin->const-new$inline x)))
Theorem:
(defthm simpadd0-gin->const-new$inline-simpadd0-gin-equiv-congruence-on-x (implies (simpadd0-gin-equiv x x-equiv) (equal (simpadd0-gin->const-new$inline x) (simpadd0-gin->const-new$inline x-equiv))) :rule-classes :congruence)