Fixtype of elliptic curve points.
Function:
(defun point-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (pointp acl2::x) (pointp acl2::y)))) (equal (point-fix acl2::x) (point-fix acl2::y)))
Theorem:
(defthm point-equiv-is-an-equivalence (and (booleanp (point-equiv x y)) (point-equiv x x) (implies (point-equiv x y) (point-equiv y x)) (implies (and (point-equiv x y) (point-equiv y z)) (point-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm point-equiv-implies-equal-point-fix-1 (implies (point-equiv acl2::x x-equiv) (equal (point-fix acl2::x) (point-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm point-fix-under-point-equiv (point-equiv (point-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-point-fix-1-forward-to-point-equiv (implies (equal (point-fix acl2::x) acl2::y) (point-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-point-fix-2-forward-to-point-equiv (implies (equal acl2::x (point-fix acl2::y)) (point-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm point-equiv-of-point-fix-1-forward (implies (point-equiv (point-fix acl2::x) acl2::y) (point-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm point-equiv-of-point-fix-2-forward (implies (point-equiv acl2::x (point-fix acl2::y)) (point-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)