
Certifying Compositional Model
Checking Algorithms in ACL2

Sandip Ray
John Matthews

Mark Tuttle

ACL2 Workshop Presentation

July 14, 2003

Outline

• Motivation and Goals

• Technical Background

• Comments on Our Work

• Issues and Proposals

Model Checking

• A procedure for automatically deducing
temporal properties of reactive computer
systems.
– The temporal properties are specified in some

temporal logic (CTL, LTL etc.)

– A computer system is specified as a Kripke
Structure.

– The properties are verified by intelligent and
systematic graph search algorithms.

Model Checking: Good, Bad, & Ugly

• Good:
– If it works, model checking (unlike theorem

proving) is a push-button tool.

• Bad:
– If the system is too large, model checking

cannot be applied because of state explosion.

• Ugly
– The system (and/or property) then needs to be

suitably “abstracted” in order to use model
checking.

Compositional Model Checking

• Replace the original verification problems by one
or more “simpler” problems.
– Exploit characteristics of the system like symmetry,

cone of influence etc.

• Solve each simpler problem using model
checking.

Can be used to verify considerably larger systems.

Verifying Compositional Algorithms

• Implementations of compositional
algorithms are often complicated.
– How do we insure that the algorithms

themselves are sound?

• A plausible solution:
– Use theorem proving to verify the algorithms.

• End Result:
– A verified tool that can be effectively used to

model check temporal properties of large
systems.

Our Work

• A feasibility test for verifying
compositional algorithms in ACL2.

• Goals:
– Implement and verify a simple compositional

algorithm based on two simple reductions.

– Integrate the compositional algorithm with a
state-of-the-art model checker (Cadence SMV)
for efficiently solving the reduced problems.

Outline

• Motivation and Goals

• Technical Background
• Comments on Our Work

• Issues and Proposals

How Do we Verify Compositional
Algorithms?

• Specify what it means to verify a temporal
property of a system model.
– Implement the semantics of model checking.

• Implement the compositional algorithms.
– Recall that a compositional algorithm decomposes a

verification problem into a number of “simpler”
problems.

• Use theorem proving to show that solving the
original problem is equivalent to solving all of the
simpler problems (with respect to the semantics of
model checking).

System Models

• A System is modeled by:
– A collection of state variables. The states of

the system are defined as the set of all possible
assignments to these variables.

– A description of how the variables are updated
in the next state.

– A set of initial states corresponding to the
collection of possible evaluations at reset.

System Model Example

boolean v1, v2, v3;

Repeat forever in parallel

v1 = v2 & v3

v2 = v1 & v3;

end.

Initial states: <000, 111>

A very simple system:

101

110 011

111
010

001000

100

Corresponding state
representation.

Modeling Temporal Properties

• We use LTL formulas to model properties.

• An LTL formula is either:
– Some state variable or the constants ����� �� � 	 �.

– A Boolean combination of LTL formulas.

– The application of a temporal operator
, �, �, �, or
 � to an LTL formula.

• Example property for the simple system:
– � (� � �)

Semantics of LTL

• The semantics of LTL is specified with respect to (infinite)
paths through the system model.
– � is true of some path if v is assigned to true in the first state of the

path. (� � � � is true of every path.)
– F stands for eventually:

• (���) is true of some path iff � is true of some suffix of the path.

– G stands for globally:
• (� ��) is true of some path iff � is true of every suffix of the path.

• A formula is true of a model iff it is true of every path
through the model.

• We will call the pair <f, M> as a verification problem, if f
is an LTL formula and M is a system model, and the
verification problem is satisfied if f is true of M.

LTL Model Checking Example

101

110 011

111
010

001000

100

Our Simple Model

�An Example Property:

�Eventually v1 becomes
false.

�Counterexample!!!

�Path through <111>

Compositional Algorithm

• Based on two simple reduction:
– Conjunctive reduction

– Cone of Influence Reduction

Conjunctive Reduction

• Replace the verification problem
– (��� ��) is � � � � of M.

• With the two problems:
– �� is � � � � of M.

– �� is � � � � of M.

Cone of Influence Reduction

Boolean v1, v2, v3, v4, v5, v6;

Repeat forever in parallel:

v1 = v2;
v2 = v1 & v3;
v3 = v1 & v2;
v4 = v5 & v3;
v5 = v4 & v6;

End.

(� � � � � �)): v1 will eventually become
�� � 	
 .

Boolean v1, v2, v3;

Repeat forever in parallel:

v1 = v2;

v2 = v1 & v3;

End.

A Simple System Model

A Simple LTL property

Cone of Influence
Reduction

Soundness of Reductions

• Conjunctive Reduction
– The verification problem <(f1 	 f2), M> is

satisfied if and only if <f1, M> is satisfied and
<f2, M> is satisfied.

• Cone of Influence Reduction
– If f is an LTL formula that refers only to the

variables in V, and C is the cone of influence of
V, then <f, M> is satisfied if and only if <f, N>
is satisfied, where N is the reduced model with
respect to C.

Compositional Algorithm
� Input: A verification problem: <f, M>
� Algorithm:

� Apply conjunctive reduction to the formula, thus
producing a collection of “simpler” verification
problems: <fi, M>

� Apply cone of influence reduction to each of the
simpler problems thus producing problems: <fi,Mi>

� Soundness theorem:
� If f is an LTL formula, and M is a model, then <f, M>

is satisfied if and only if each <fi, Mi> is satisfied.

Note: Soundness of this algorithm follows from the
soundness of the reductions.

Outline

• Motivation and Goals

• Technical Background

• Comments on Our Work
• Issues and Proposals

Proving Compositional Algorithms

• The biggest stumbling block is the
definition of the semantics of LTL.
– LTL semantics are classically defined with

respect to infinite sequences (paths).

– The definitional equations require the use of
recursion and quantification.

• We could not define the classical semantics
of LTL in ACL2.

Eventually Periodic Paths

• These are special infinite paths
with a finite prefix followed by
a finite cycle (which is repeated
forever).

• Known result:
– If an LTL f property does

not hold for some infinite
path in some model M, there
is an eventually periodic
path in M for which f does
not hold.

eventually
periodic

path
infinite

path

Modeling Semantics of LTL in
ACL2
• Eventually periodic paths are finite structures.

– We can represent them as ACL2 objects.

– We define the semantics of LTL with respect to such
structures.

– We define the notion of a formula being true of a model
by quantifying over all eventually periodic paths
consistent with the model.

– The known result guarantees this is equivalent to the
standard semantics.

Issues with the Definition

• We verified our compositional algorithm to be
sound using this definition.

• Observations on the proof:
– The definition is more complicated to work with than

the traditional definition.
– The proofs of the reductions are very different from the

standard proofs.
– Some proofs, for example soundness of cone of

influence, get much more complicated than the
standard proofs.

Note: Details of the complications are in the paper.

Outline

• Motivation and Goals

• Technical Background

• Comments on Our Work

• Issues and Proposals

Principal Proposals

1. Addition of External Oracles

2. Reasoning about infinite sequences in
ACL2

External Oracles
• We proved that the original verification problem is

satisfied if and only if each of the “simpler” verification
problems is satisfied.

• For a particular verification problem we want:
– To use the algorithm to decompose it into a simpler problem.
– To use an efficient model checker to model check each of the

simpler problems.

• But we do not want to implement an efficient LTL model
checker in ACL2.
– There are trusted model checkers in the market to do the job.
– As long as we believe that the external checkers satisfy the

semantics we provided in ACL2, we should be allowed to invoke
them.

Intermediate hack

• Define an executable function
 �
 �� � � �with a
� � � � of �.

• Define axiom positing
 �
 �� � � is logically
equivalent to the logical definition of semantics of
LTL.

• In the Lisp, replace the definition of
 �
 �� � � to a
� � � �

 that calls the external model checker
(Cadence SMV).

• We have used the composite system to check
simple LTL properties of system models using our
compositional algorithm.

Proposal: External Oracles

• Note that if
 �
 �� � � is not an LTL model checker
then the axiom posited makes the logic unsound.
– We have never used the logical body of � � � �� � � � , but a

� �	 � hint expanding the body will enable you to prove
� � � !

• Can ACL2 give us a better way of integrating an
external tool?
– It is important for ACL2 not to be monolithic.

– Other theorem provers like Isabelle have such
capability.

Infinite Sequences: Recursion with
Quantifiers

• To define the natural semantics of LTL, we need
quantification with recursion (plus some
axiomatization of infinite paths).
– ACL2 does not allow recursion with quantification.
– The addition of such facility violates “conservativity”

of the logic.
• We have claimed that having addition of such

facility is sound, though not conservative.
• Is it possible to reduce the restrictions imposed by

ACL2?
– Is such an extension possible with ACL2(R)?

Questions?

