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Model Checking

• A procedure for automatically deducing 
temporal properties of reactive computer 
systems.
– The temporal properties are specified in some 

temporal logic (CTL, LTL etc.)

– A computer system is specified as a Kripke 
Structure.

– The properties are verified by intelligent and 
systematic graph search algorithms.



Model Checking: Good, Bad, & Ugly

• Good:
– If it works, model checking (unlike theorem 

proving) is a push-button tool.

• Bad:
– If the system is too large, model checking 

cannot be applied because of state explosion.

• Ugly
– The system (and/or property) then needs to be 

suitably “abstracted” in order to use model 
checking.



Compositional Model Checking

• Replace the original verification problems by one 
or more “simpler” problems.
– Exploit characteristics of the system like symmetry, 

cone of influence etc.

• Solve each simpler problem using model 
checking.

Can be used to verify considerably larger systems.



Verifying Compositional Algorithms

• Implementations of compositional 
algorithms are often complicated.
– How do we insure that the algorithms 

themselves are sound?

• A plausible solution:
– Use theorem proving to verify the algorithms.

• End Result:
– A verified tool that can be effectively used to 

model check temporal properties of large
systems.



Our Work

• A feasibility test for verifying 
compositional algorithms in ACL2.

• Goals:
– Implement and verify a simple compositional 

algorithm based on two simple reductions.

– Integrate the compositional algorithm with a 
state-of-the-art model checker (Cadence SMV) 
for efficiently solving the reduced problems.
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How Do we Verify Compositional 
Algorithms?

• Specify what it means to verify a temporal 
property of a system model.
– Implement the semantics of model checking.

• Implement the compositional algorithms.
– Recall that a compositional algorithm decomposes a 

verification problem into a number of  “simpler” 
problems.

• Use theorem proving to show that solving the 
original problem is equivalent to solving all of the 
simpler problems (with respect to the semantics of 
model checking).



System Models

• A System is modeled by:
– A collection of  state variables. The states of 

the system are defined as the set of all possible 
assignments to these variables.

– A description of how the variables are updated 
in the next state.

– A set of initial states corresponding to the 
collection of possible evaluations at reset.



System Model Example

boolean v1, v2, v3;

Repeat forever in parallel

v1  =  v2 & v3

v2  =  v1 & v3;

end.

Initial states: <000, 111>

A very simple system:

101

110 011

111
010

001000

100

Corresponding state 
representation. 



Modeling Temporal Properties

• We use LTL formulas to model properties.

• An LTL formula is either:
– Some state variable or the constants ����� �� � 	 �.

– A Boolean combination of LTL formulas.

– The application of a temporal operator 
, �, �, �,  or 
 � to an LTL formula.

• Example property for the simple system: 
– � (� � � )



Semantics of LTL

• The semantics of LTL is specified with respect to (infinite) 
paths through the system model.
– � is true of some path if v is assigned to true in the first state of the 

path. ( � � � � is true of every path.)
– F stands for eventually:

• (���) is true of some path iff � is true of some suffix of the path.

– G stands for globally:
• ( � ��) is true of some path iff � is true of every suffix of the path.

• A formula is true of a model iff it is true of every path 
through the model.

• We will call the pair <f, M> as a verification problem, if f 
is an LTL formula and M is a system model, and the 
verification problem is satisfied if f is true of M.



LTL Model Checking Example

101

110 011

111
010

001000

100

Our Simple Model

�An Example Property:

�Eventually v1 becomes       
false.

�Counterexample!!!

�Path through <111>  



Compositional Algorithm

• Based on two simple reduction:
– Conjunctive reduction

– Cone of Influence Reduction



Conjunctive Reduction

• Replace the verification problem 
– (��� �� ) is � � � � of M.

• With the two problems:
– �� is � � � � of M.

– �� is � � � � of M.



Cone of Influence Reduction

Boolean v1, v2, v3, v4, v5, v6;

Repeat forever in parallel:

v1  =   v2;
v2  =   v1 & v3;
v3  =   v1 & v2;
v4   =  v5 & v3;
v5   =  v4 & v6;

End.

(� � � � � � )): v1 will eventually become   
�� � 	 
 .

Boolean v1, v2, v3;

Repeat forever in parallel:  

v1  =  v2;

v2  =  v1 & v3;

End.

A Simple System Model

A Simple LTL property

Cone of Influence 
Reduction



Soundness of Reductions

• Conjunctive Reduction
– The verification problem <(f1 	 f2), M> is 

satisfied if and only if <f1, M> is satisfied and 
<f2, M> is satisfied.

• Cone of Influence Reduction
– If f is an LTL formula that refers only to the 

variables in V, and C is the cone of influence of 
V, then <f, M> is satisfied if and only if <f, N>
is satisfied, where N is the reduced model with 
respect to C.



Compositional Algorithm
� Input: A verification problem: <f, M>
� Algorithm:

� Apply conjunctive reduction to the formula, thus 
producing a collection of “simpler” verification 
problems: <fi, M>

� Apply cone of influence reduction to each of the 
simpler problems thus producing problems: <fi,Mi>

� Soundness theorem:
� If f is an LTL formula, and M is a model, then <f, M>

is satisfied if and only if each <fi, Mi> is satisfied.

Note: Soundness of this algorithm follows from the 
soundness of the reductions.
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Proving Compositional Algorithms

• The biggest stumbling block is the 
definition of the semantics of LTL.
– LTL semantics are classically defined with 

respect to infinite sequences (paths).

– The definitional equations require the use of 
recursion and quantification.

• We could not define the classical semantics 
of LTL in ACL2.



Eventually Periodic Paths

• These are special infinite  paths 
with a finite prefix followed by 
a finite cycle (which is repeated 
forever).

• Known result:
– If an LTL f property does 

not hold for some infinite 
path in some model M, there 
is an eventually periodic 
path in M for which f does 
not hold. 

eventually 
periodic 

path
infinite 

path



Modeling Semantics of LTL in 
ACL2
• Eventually periodic paths are finite structures.

– We can represent them as ACL2 objects.

– We define the semantics of LTL with respect to such 
structures.

– We define the notion of a formula being true of a model 
by quantifying over all eventually periodic paths 
consistent with the model.

– The known result guarantees this is equivalent to the 
standard semantics.



Issues with the Definition

• We verified our compositional algorithm to be 
sound using this definition.

• Observations on the proof:
– The definition is more complicated to work with than 

the traditional definition.
– The proofs of the reductions are very different from the 

standard proofs.
– Some proofs, for example soundness of cone of 

influence, get much more complicated than the 
standard proofs.

Note: Details of the complications are in the paper.
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Principal Proposals

1. Addition of External Oracles

2. Reasoning about infinite sequences in 
ACL2



External Oracles
• We proved that the original verification problem is 

satisfied if and only if each of the “simpler” verification 
problems is satisfied.

• For a particular verification problem we want:
– To use the algorithm to decompose it into a simpler problem.
– To use an efficient model checker to model check each of the 

simpler problems.

• But we do not want to implement an efficient LTL model 
checker in ACL2.
– There are trusted model checkers in the market to do the job.
– As long as we believe that the external checkers satisfy the 

semantics we provided in ACL2, we should be allowed to invoke 
them.



Intermediate hack

• Define an executable function 
 � 
 ��  � � �with a 
� �  � � of �.

• Define axiom positing 
 � 
 ��  � � is logically 
equivalent to the logical definition of semantics of 
LTL.

• In the Lisp, replace the definition of 
 � 
 ��  � � to a 
� � � �  
 
 that calls the external model checker 
(Cadence SMV).

• We have used the composite system to check 
simple LTL properties of system models using our 
compositional algorithm.



Proposal: External Oracles

• Note that if  
 � 
 ��  � � is not an LTL model checker  
then the axiom posited makes the logic unsound.
– We have never used the logical body of � � � �� � � � , but a 

� �	 � hint expanding the body will enable you to prove 
� � � !

• Can ACL2 give us a better way of integrating an 
external tool?
– It is important for ACL2 not to be monolithic.

– Other theorem provers like Isabelle have such 
capability.



Infinite Sequences: Recursion with 
Quantifiers

• To define the natural semantics of LTL, we need 
quantification with recursion (plus some 
axiomatization of infinite paths).
– ACL2 does not allow recursion with quantification.
– The addition of such facility violates “conservativity” 

of the logic.
• We have claimed that having addition of such 

facility is sound, though not conservative.
• Is it possible to reduce the restrictions imposed by 

ACL2?
– Is such an extension possible with ACL2(R)?



Questions?


