
Reverse Abstration in ACL2

Dr. Bill YoungComputer Sienes DepartmentUniversity of Texas at Austinbyoung�s.utexas.edu

ACL2 Workshop 2004Draft of November 8, 2004

ACL2 Workshop 2004 1 Reverse Abstration

Formal Modeling

Formal models of digital systems are onstruted for a variety ofpurposes.Simulator models: may be highly optimized for eÆieny, but notongenial for proof;Abstrat models: may be elegant and well-suited for formalanalysis, but highly ineÆient for exeution.It may be diÆult to build a single model that supports suh disparategoals.
ACL2 Workshop 2004 2 Reverse Abstration

Possible Solutions

� Construt an abstrat system model, and then re�ne it through aseries of steps to eke out exeution eÆieny.� Introdue oneptual abstrations into an existing low-level modelhand-tooled for eÆieny.

ACL2 Workshop 2004 3 Reverse Abstration

AAMP7 Model

The existing artifat for this projet is the Rokwell Collins AAMP7proessor model.� Very detailed low level model of the AAMP7 proessor.� Represents man-years of e�ort.� Highly optimized for eÆient exeution.� Extensive use of sophistiated maros.

ACL2 Workshop 2004 4 Reverse Abstration

AAMP7 Operation Semantis

Operation semantis are de�ne in terms of a omplex reader maro,that essentially emulates an imperative language in an appliativeontext.Example: the LIT16 operation takes a 16-bit quantity from theinstrution stream and pushes it onto the stak.(defun op-lit16 (st)(delare (xargs :stobjs (st)))(AAMP *state->state*(feth_word ux);(push ux);st))
ACL2 Workshop 2004 5 Reverse Abstration

AAMP Operation Semantis

The all (OP-LIT16 ST) atually maro-expands into the following:(update-nth*aamp.ram*(write_memory(makeaddr (nth *aamp.denvr* st)(logand 65535(logext 32 (+ -2 (nth *aamp.tos* st)))))(ga::rx 16(makeaddr (nth *aamp.envr* st)(nth *aamp.p* st))(nth *aamp.ram* st))(nth *aamp.ram* st))(update-nth*aamp.tos*(logand 65535(logext 32 (+ -2 (nth *aamp.tos* st))))(update-nth *aamp.p*(logand 65535(logext 32 (+ 2 (nth *aamp.p* st))))st)))
ACL2 Workshop 2004 6 Reverse Abstration

Abstrating

Staring at the spei�ation we notie the form:(logand 65535 (logext 32 (+ k x)))This is provably equivalent to the slightly simpler logial expression:(loghead 16 (+ k x)).and we ould rewrite it to this form, but that still isn't very abstrat.

ACL2 Workshop 2004 7 Reverse Abstration

Abstrating

Let's de�ne the following funtion and rewrite rule:(defun plus16 (k x)(loghead 16 (+ k x)))(defthm plus16-abstrator(equal (loghead 16 (+ k x))(plus16 k x)))Note that it would be disastrous to have both of these enabled.

ACL2 Workshop 2004 8 Reverse Abstration

Defabstrator

This proess is very stylized and an all be aomplished with a maro.(defabstrator plus16 (k x)(loghead 16 (+ k x)))whih enapsulates the de�nition of PLUS16, rewrite rule, and disable.

ACL2 Workshop 2004 9 Reverse Abstration

Multiple Forms

If there are various forms of the same essential abstrat onept, we an\anonialize" them:(defthm plus16-abstrator-2(equal (logand 65535 (add32 x k))(plus16 k x)))Abstrations may be nested.(defabstrator next-stak-address (st)(makeaddr (nth *aamp.denvr* st)(plus16 -2 (nth *aamp.tos* st))))

ACL2 Workshop 2004 10 Reverse Abstration

Rewriting with Abstrations

One the abstrations are in plae, other rewrites are suggested, e.g., toonsolidate multiple updates to the state:(defthm in-p-in-p(implies (and (st-p st)(unsigned-byte-p 16 (+ i j (p st))))(equal (in-p i (in-p j st))(in-p (+ i j) st))))

ACL2 Workshop 2004 11 Reverse Abstration

Applying Reverse Abstration

Applying reverse abstration and rewriting to the OP-LIT16 semantis,we an prove:(defthm lit16-rewriter(implies(st-p st)(equal (op-lit16 st)(write-to-ram (next-stak-address st)(feth-ode-word (p st)(envr st)(ram st))(in-tos -2 (in-p 2 st)))))This provides an alternative semantis for the LIT16 operation.ACL2 Workshop 2004 12 Reverse Abstration

EÆieny

Emulation of iterative behavior in an appliative ontext may be veryineÆient. Think about the omputation of the top-of-stak pointer in:(defun op-addi (st)(reader'((feth-word x)(push x)(feth-word y)(push y)(add))))Naively, you inrement twie and then derement. An abstratimplementation merely inrements one.ACL2 Workshop 2004 13 Reverse Abstration

Conlusions

The ultimate goal is to be able to prove properties of AAMP7programs. The reverse abstration proess is a useful step toward asuitable semantis.�We have desribed an approah to introdue \abstration" into anexisting formal spei�ation.� The result may atually be more eÆient to exeute beauseoptimizations are easier to see in the abstrat version.� The result is more readable and hopefully more amenable to formalanalysis.
ACL2 Workshop 2004 14 Reverse Abstration

