Implementing abstract types in ACL2

Vernon Austel
IBM T.J. Watson Research Center

July 7, 2003

Abstract

This paper summarizes the author’s experience implementing some-
thing resembling abstract types in ACL2. It assumes some experience
with the ACL2 theorem prover.

1 Introduction

This paper summarizes the author’s experience implementing something resem-
bling abstract types in ACL2[2]. It assumes some experience with the ACL2
theorem prover.

ACL2 imposes no syntactic restriction on the arguments that a function may
be applied to!; any function (e.g. car) may be applied to any object (e.g 3),
and the result of such function applications must be dealt with in proofs.

Type abstraction separates the interface of a data structure from its imple-
mentation [1]. This is accomplished by syntactically restricting which operations
can be applied to data of a given type. In typed languages and logics, the typ-
ing mechanism is enforced by the compiler or interpreter; one cannot access an
object except through its interface. There is no provision for this in ACL2; the
best one can do is try to avoid violating the interface.

The motivations for using abstract types are different in programming lan-
guages as opposed to logics. In programming languages, it allows the imple-
mentation of the type to be changed without affecting the logic of the code that
uses it, and hiding representation details makes the code that uses it easier to
understand [1, page 89]. It isn’t clear that these are important issues in a logic,
where one is (often) more concerned about what a specification does that its
execution efficiency, and where it is generally possible to understand what it
does in much greater detail than any program, regardless of how the data is
organized.

The author nevertheless sees advantages in using something like abstract
types for reasoning. Theorems tend to have fewer hypotheses, and inductive

1Of course, the correct number of arguments must be used, and single-threaded objects
must be passed appropriately.

subgoals tend to be more readable. The drawback is that it requires more work
to set up the supporting framework.

This paper goes into some detail on how to get much of the flavor of abstract
types using equivalence relations and functional instantiation in ACL2. It con-
tains nothing difficult or new (similar ideas are in the book set-theory.lisp
in the standard distribution), but the example given is more elaborate, and may
benefit those who are unfamiliar with the issues raised.

2 A very simple example

We use lists as a simple introductory example. The first of the following two
events is a theorem in ACL2, but the second is not, because append may be ap-
plied to any ACL2 object, including integers and strings; for example, (append
0 nil) is equal to nil (not 0).

(defthm append-nil
(implies (true-listp 1)
(equal (append 1 nil) 1)))

;3 This is false.
(thm
(equal (append 1 nil) 1))

The problem is that we are only “interested” in the application of append
to true lists, but must nevertheless deal with other, “senseless” cases. Here,
what may be thought of as the type information concerning the argument is
provided by the hypothesis (true-listp 1). While making all functions total
simplifies the logic, it is a nuisance when stating and proving theorems about
those functions.

One may alternatively provide this type information via an equivalence re-
lation; rather than using a hypothesis to screen out the unwanted cases, one
makes the equivalence function treat them like sensible ones. We end up with
a goal like this (which, given the right definition for list=, is a theorem):

(thm
(list= (append 1 nil) 1))

One may define equivalence relations in different ways, but the author has
found it convenient to define them in terms of “fixing” routines?. A fixing
routine takes the universe of all ACL2 objects and maps it into the subset of
objects that we are interested in. In this case, we map all objects into the set of
true lists. Two objects are equivalent if they are mapped to the same true list.

2The standard ACL2 book set-theory also uses this style. Experienced ACL2 users may
be concerned that using fixing functions is inefficient, but the author is not concerned about
efficiency in this paper. One may always define a second relation that does not use a fixing
function, prove that the second relation is the same as the equivalence relation, use the efficient
relation in function definitions and rewrite it to the equivalence relation. The author believes
that techniques like this can address any efficiency issues raised by this paper.

(defun listfix (x)
(if (endp x)
nil
(cons (car x) (listfix (cdr x)))))

(defun list= (x y)
(equal (1listfix x) (listfix y)))

(defequiv list=)

With this equivalence, one can prove the goal above, after proving some
preliminary lemmas (which actually may not be obvious for those inexperienced
with these kinds of proofs).

The whole point of introducing an equivalence is to use it in congruence the-
orems. Roughly speaking, the following events say that append returns results
that are list= if they are given inputs that are list=; in the official termi-
nology, list= is maintained by list= in the first (and second) argument of
append.

(defcong list= list= (append x y) 1)
(defcong list= list= (append x y) 2)

The above 1istfix is not the only possible fixing function for true lists. One
could also define listfix as follows:

(defun another-listfix (x)
(if (true-listp x)
X
nil))

Generally speaking, one wants the fixing function to “work well” with func-
tions to be defined on the data type. This particular fixing function does not
seem useful, because 1ist= is not maintained by list= on either argument of
append.

This short example already shows some of the advantages and disadvantages
of this style. The theorem we prove has fewer hypotheses (none in this case),
but more preparation (functions and theorems) was required to get it. Since
rules won’t “fire” if their hypotheses aren’t relieved, all other things being equal,
a rule with fewer hypotheses is easier to use (since one is often in the position
of trying to figure out why a particular rule didn’t fire); on the other hand,
one must remember to use the right equivalence relation, and must remember
to prove the proper congruence theorems about functions being used®. In sum,
using equivalence relations does not have a clear advantage over using type
hypotheses; the author nevertheless prefers it for complicated data types.

3In some unusual circumstances ACL2 will actually not relieve trivial hypotheses such as
(equiv x x), for an equivalence relation equiv other than equal or iff. This can be especially
annoying because it is the last thing one thinks of when trying to determine why a rule doesn’t
fire.

3 A more realistic example: expressions

We now describe the general steps one goes through to define an abstract type
in this style, using expression evaluation as the example since that is likely to
be familiar. The prepatory steps are:

e define a “kind” predicate, if appropriate
e define destructors and constructors

e prove measure lemmas for the destructors

define a “fix” function, using the destructors

define the equivalence using the fix function
e prove congruence theorems for the destructors and constructors
e prove elimination rules for the constructors

The abstract types considered here correspond to what a C programmer
would think of as a “union” type where one can distinguish between the union
variants. For example, there are many kinds of C expressions: applications of bi-
nary and unary operators, pointer and struct dereferences, address expressions,
and more. The represention of each kind of expression generally has different
subcomponents; we will assume that each subcomponent has a distinct accessor
(or “destructor”). There must be some way to determine which union variant
a given object corresponds to so that (only) the proper destructor is applied to
it.

One way is to define a predicate for each variant whose purpose is to recog-
nize that variant; for example, a predicate binop-p would recognize only those
expressions that represent binary operations. The problem is that one frequently
ends up with goals that contain contradictory information about a particular
object, perhaps containing both (binop-p expr) and (unop-p expr). With
specialized predicates, one must have many rules saying (for example) that
an object cannot satisfy both binop-p and unop-p. These contradictions are
resolved faster if there is a single function that returns a symbol or integer
representing the union variant that the object corresponds to. One might be
tempted to “not bother” using this function for variants that are implemented
with primitive types (such as symbols), because one could then use a primitive
function (such as symbolp) to test for them, but we believe that things work
better if the function is used to distinguish between all variants.

In our example there will be only three kinds of expressions: integers, sym-
bols and binary operations. This is the function we use to divide the ACL2
universe into these three categories:

(defun expr-kind (expr)
(cond ((symbolp expr) ’SYMBOL)
((consp expr) ’BINOP)
(t ’LID)))

There is considerable freedom in how this function is defined. We have found
that it simplifies proofs if the variants can be distinguished as easily as possible.
One of the variants must be a “leftover” case; here we happen to interpret the
leftovers as literals, but there is no particular reason to do so.

This function is not used as a “recognizer”; that is, the fact that the expr-kind
of an object is BINOP does not means it what one would think of as a “well-
formed” binary expression. That is a separate concept, which can be developed
to be used in guards to improve performance. There is no logical necessity to
require objects to be well-formed; indeed, the whole point of using equivalence
relations in this case is to avoid the concept of well-formedness in theorems.

This example is designed to be small, but large enough to illustrate the main
ideas without being trivial. In actual datatypes most variants are likely to be
similar to BINOP; a data structure representing C statements may have ten
variants.

Only the BINOP variant in our simple example has subcomponents. They
are defined as follows:

(defun binop-op (x)
(if (equal (expr-kind x) ’BINOP)
(cadr x)
nil))

(defun binop-left (expr)
(if (equal (expr-kind expr) ’BINOP)
(caddr expr)
nil))

(defun binop-right (expr)
(if (equal (expr-kind expr) ’BINOP)
(cadddr expr)
nil))

The destructors all test the argument to see if it is the appropriate kind;
otherwise, they return some default value (which happens to be nil in this case,
but could be whatever is convenient). If they did not do so, one probably could
not prove useful congruence theorems about them. Obviously, no attempt at all
has been made to make the destructors efficient; they are designed to simplify
proofs. Issues of efficiency are not addressed in this paper.

It is convenient to prove measure lemmas for function definitions, since in
general we want to disable the destructor definitions and regard them as prim-
itives. This is one of the two that must be proved for expressions:

(defthm acl2-count-binop-left
(implies (equal (expr-kind expr) ’BINOP)
(< (acl2-count (binop-left expr))
(acl2-count expr)))
:rule-classes (:rewrite :linear))

After this, one defines constructor functions; in this case, there is really only
one, but we show two. Our expressions only allow integer literals, and in a
sense one “constructs” such a literal by fixing it. This is certainly different from
packaging it in a list, but such “constructors” are used in proofs in a way that
is similar to ordinary constructors®. We use it just to constrast it with our
handling of symbols.

(defun mk-binop (op left right)
(list ’BINOP op left right))

(defun litfix (x)

(ifix x))

Next, one defines the “fix” function and the equivalence relation, similar to
the way list= was defined above.

(defun exprfix (expr)

(let ((kind (expr-kind expr)))
(case kind
(SYMBOL expr)

(LIT

(1itfix expr))

(otherwise

(defun expr= (x y)
(equal (exprfix x) (exprfix y)))
(defequiv expr=)

(mk-binop (binop-op expr)

(exprfix (binop-left expr))
(exprfix (binop-right expr)))))))

Finally, one shows that the destructors and constructors maintain the ap-
propriate equivalence (often expr= or equal) on expr= in their arguments®.

(defcong expr=
(defcong expr=
(defcong expr=

(defcong expr=
(defcong expr=

equal
expr=
expr=

expr=
expr=

(binop-op expr) 1)
(binop-left expr) 1)
(binop-right expr) 1)

(mk-binop bop left right) 2)
(mk-binop bop left right) 3)

4In fact, ACL2 allows one to define an elimination rule for litfix, just like any other con-
structor; see the proof script. It is unlikely to be useful, however.

5A destructor may maintain an equivalence other than expr= or equal depending on how
its associated constructor is defined. For example, there may be a special equivalence relation
for the set of symbols representing binary operations; if mk-binop coerced its bop argument
to that set (using the associated fixing function), then that would be the equivalence that
binop-op maintains. If binop-op itself coerced its return value, then it maintains equal.

It is occasionally useful to have elimination rules for the constructors. Al-
though it doesn’t play a role in this discussion, we show what one looks like in
this example.

(defthm elim-binop
(implies (equal (expr-kind expr) ’BINOP)
(expr= (mk-binop (binop-op expr)
(binop-left expr)
(binop-right expr))
expr))
:rule-classes (:rewrite :elim))

4 Defining functions on the type

After this lengthy preparation, one may now define new ACL2 functions in
terms of the destructor functions and prove that they maintain an equivalence
(in this case, equal) on expr=. The steps are:

e define a function in terms of the destructors and constructors
e prove “expansion” theorems
e prove the congruence theorem, using a lemma concerning the fix function

Our first example will be the a function that returns the variables used in
6

an expression®.
(defun free-vars (expr)
(let ((kind (expr-kind expr)))
(case kind

(SYMBOL (list expr))

(LIT =nil)

(t (append (free-vars (binop-left expr))

(free-vars (binop-right expr))))

(defthm expand-free-vars
(and (implies (equal (expr-kind expr) ’SYMBOL)

(equal (free-vars expr) (list expr)))

(implies (equal (expr-kind expr) ’LIT)
(equal (free-vars expr) nil))

(equal (free-vars (litfix expr)) nil)

(equal (free-vars (mk-binop op left right))

6While the concept of “free variables” only makes sense in a context where they can be
bound, the author calls them that out of habit.

(append (free-vars left)
(free-vars right)))))

(encapsulate
nil
(local
(defthm lemma
(equal (free-vars (exprfix expr))
(free-vars expr))
:rule-classes nil))

(defcong expr= equal (free-vars expr) 1
:hints (("Goal" :in-theory (e/d (expr=))
:use (lemma (:instance lemma (expr expr-equiv))))))

The expansion theorem gives the value of the new function when applied to
constructors; it actually resembles what would be considered the function defi-
nition in the typed logic HOL. The basecases typically cause problems: variants
without constructors (here: SYMBOL) need hypotheses, while those with con-
structors don’t. Here, we give both a constructor and non-constructor expansion
for variant LIT; it seems that each style has a way of cropping up.

The congruence theorem uses a lemma concerning exprfix; this is a conse-
quence of defining the equivalence relation in terms of a fixing function. In this
example, if the equivalence relation had been defined directly in terms of de-
structors, the proof is in some ways easier’. There may be no compelling reason
to define equivalence relations this way, but the author has come to prefer it®.

One can write a macro that proves the desired congruence using a generated
intermediate lemma; with such a macro the encapsulate event above can be
replaced by this:

(defcong-fix expr= equal (free-vars expr) 1)

The macro assumes that there is a fixing function XXXfix (here: exprfix)
corresponding to the source equivalence relation XXX= (here: expr=).

The second example function is expression evaluation. We omit the expan-
sion and congruence theorems.

(defun eval-expr (expr env)
(let ((kind (expr-kind expr)))
(case kind

7An example implementation is given in the proof script.

8The author believes that fixing functions simplify congruence proofs in some difficult
cases, because any induction machine that correctly changes expr in subgoals will also cor-
rectly change (exprfix expr), but it is unlikely that it will change two variables (expr and
expr-equiv) correctly. In that case, one must write a dummy function to generate an induc-
tion machine that guides the other variable. Fixing functions seem easier, especially with a
macro like defcong-£fix, introduced below.

(SYMBOL (cdr (assoc expr env)))

(LIT (1itfix expr))

(t (+ (eval-expr (binop-left expr) env)
(eval-expr (binop-right expr) env))))))

5 Using functional instantiation for proofs

We may now state and prove a theorem about our example functions: if an
expression contains no symbols, then it doesn’t matter what environment is
passed to eval-expr®.

(defthm env-irrelevant
(implies (not (consp (free-vars expr)))
(equal (eval-expr expr env)
(eval-expr expr nil))))

The proof of env-irrelevant is inductive, and its subgoals involve calls
to expr-kind and the expr destructor functions (such as binop-left), because
they are used in the definitions of the functions being reasoned about. There is
nothing wrong with this, but can avoid having these destructors arise in proofs
using functional instantiation. In effect, one does an abstract recursive proof
once and instantiates it as needed. We now describe how this is done.

First, one uses encapsulate to specify what it means for a property to be
inductive on expressions'®.

(encapsulate

((expr-induct (expr) t))

(local (defun expr-induct (x) (declare (ignore x)) t))

(defthm expr-induct-symbol
(implies (equal (expr-kind expr) ’SYMBOL)
(expr-induct expr)))

(defthm expr-induct-1lit
(expr-induct (litfix expr)))

(defthm expr-induct-binop
(implies (and (expr-induct left)
(expr-induct right))
(expr-induct (mk-binop binop left right))))

9This lemma is dangerous as written, since it will probably cause overflow if it ever used,
but it was difficult to think of a simple, non-trivial theorem. One could always add a syntaxp
hypothesis to avoid overflow.

10This is naturally very similar to the so-called induction machine corresponding to the
recursive functions such as free-vars.

(defcong expr= iff (expr-induct expr) 1)
)

The constraints use constructors, not destructors. We can do this because we
require that the inductive relation maintain iff on expr= in its argument.
As in the expansion theorem, the basecases may be given in different styles.
Here, we give the basecase for literals using the “constructor” litfix, but the
basecase for symbols is given using a hypothesis. The hypothesis could just as
well have been (symbolp expr), but we favor the “type kind” predicate (here:
expr-kind) over lower-level predicates such as symbolp!!.

Given these assumptions, we can prove that this property must be true for
all arguments.

(encapsulate
nil
(local
(defthmd lemma
(expr-induct (exprfix expr))
thints (("Goal" :in-theory (disable
expr=-implies-iff-expr-induct-1)))))

(defthm expr-induct-thm
(expr-induct expr)
thints (("Goal" :use lemma)))

)

The author finds it interesting that in the proof of the lemma, exprfix
converts expr into an ACL2 term that uses expr constructors which allows the
subgoal to be rewritten using the appropriate constraint rule'?; this greatly
simplifies the proof. The trick is that one must prevent (exprfix expr) from
immediately being rewritten to expr! Since expr-induct maintains iff on
expr= (by hypothesis), this will happen unless we do something to prevent it!3.

With this general theorem, we can now prove our theorem using functional
instantiation as follows:

(defthm env-irrelevant
(implies (not (consp (free-vars expr)))
(equal (eval-expr expr env)
(eval-expr expr nil)))
:hints (("Goal"
:use (:functional-instance
expr-induct-thm

11 Alternatively, one could introduce a “constructor” for symbols.

12The basecases pose a problem precisely when they have no constructors, and usually need
helper lemmas, which are omitted here for brevity.

13The rune expr=-implies-iff-expr-induct-1 refers to the defcong event that is the last
constraint in the encapsulate event introducing expr-induct. The defcong macro generates
this name from the arguments passed to it.

10

(expr-induct
(lambda (expr)
(implies (not (consp (free-vars expr)))
(equal (eval-expr expr env)
(eval-expr expr nil)))))))))

The subgoals of this proof are generated from the constraints on expr-induct.
There is a small amount of flexibility concerning how those constraints are
stated; if nothing else, sensible variable names can be chosen (the exact same
variables will appear in the subgoals).

On average, this proof takes less time than the inductive proof, especially
when the definitions of the inductive functions are disabled. This is not unusual;
the author believes that a speedup of five or so is typical for types with more
variants and for more complex goals.'*. It should be stressed that this speedup
is only an added bonus, not the author’s main motivation for using this style,
which is to avoid annoying type hypotheses as much as possible.

It cannot be denied that this is a cumbersome way to write the proof. With
the appropriate macro'® the event using functional instantiation looks almost
the same as the one using induction:

(defexprthm env-irrelevant
(implies (not (consp (free-vars expr)))
(equal (eval-expr expr env)
(eval-expr expr nil))))

6 Using functional instantiation for definitions

The proof of the congruence theorem for the functions free-vars and eval-expr
may also be done using functional instantiation. Just as we defined an abstract
“representative” inductive property on expressions, we may also define a “rep-
resentative” function on expressions, together with conditions that prove that
it is congruent on expressions. Because our example functions are so simple,
they return exactly the same thing when passed equivalent arguments (that is
why the second equivalence in the defcong is equal). That won’t always be the
case. We can accomodate the more general case by introducing a function to
represent the target equivalence.

(encapsulate
((expr-fn= (x y) t))
(local (defun expr-fn= (x y) (equal x y)))
(defequiv expr-fn=)

)

14This is not the result of a systematic comparison of the two styles. It is simply the author’s
habit to record the runtime of proofs that take a long time. The times for these proofs were
dramatically reduced when they were converted to the new style.

15The macro definition is given in the proof script, but is not shown here.

11

We then introduce one constrained function for each expr variant. These func-
tions take an argument for each destructor in the variant, or just one argument
representing the whole expression if there are none. For those variants that
are recursive (BINOP in our example), not only are there arguments for the
recursive subcomponents, but there are arguments representing the recursive
calls on those subcomponents; we denote these values with (part of) the name
of the destructor prefixed with a dollar sign'®. The expr-symbol-fn function
has no constraints, because it doesn’t have to; expressions are expr= iff they are
equallf

(encapsulate
((expr-symbol-fn (expr) t)
(expr-1lit-fn (expr) t)
(expr-binop-fn (op left $left right $right) t))

(set-ignore-ok t)
(set-irrelevant-formals-ok t)

(local (defun expr-symbol-fn (expr) t))
(local (defun expr-lit-fn (expr) t))
(local (defun expr-binop-fn (op left $left right $right) t))

(defcong expr= expr-fn= (expr-lit-fn expr) 1)

(defcong expr= expr-fn= (expr-binop-fn

op left $left right $right) 2)
(defcong expr-fn= expr-fn= (expr-binop-fn

op left $left right $right) 3)
(defcong expr= expr-fn= (expr-binop-fn

op left $left right $right) 4)
(defcong expr-fn= expr-fn= (expr-binop-fn

op left $left right $right) 5)
)

We may now define a general-purpose function in terms of these constrained
ones and show that it maintains expr-fn= on expr= in its argument. The
congruence proof resembles the proof for free-vars, so the details are omitted.

(defun expr-fn (expr)
(let ((kind (expr-kind expr)))
(case kind
(SYMBOL (expr-symbol-fn expr))
(LIT (expr-lit-fn expr))
(t (expr-binop-fn (binop-op expr)

16This is a completely arbitrary convention.
17This isn’t obvious. The author initially constrained it, and only realized this when at-
tempting to define the example function expr-subst.

12

(binop-left expr)

(expr-fn (binop-left expr))

(binop-right expr)

(expr-fn (binop-right expr)))))))
(defcong expr= expr-fn= (expr-fn expr) 1)

Once again, a macro makes things easier. The defexpr macro defines the
function, generates an expansion theorem and also a congruence theorem, prov-
ing both by functional instantiation'®. Rather than show the macro’s definition,
which is somewhat complicated, we will just show calls to the macro for our ex-
amples.

(defexpr free-vars (expr) equal
:SYMBOL (1list expr)
:LIT nil
:BINOP (append $left $right))

(defexpr eval-expr (expr env) equal
:SYMBOL (cdr (assoc expr env))
:LIT (1itfix expr)

:BINOP (+ $left $right))

By convention, the expression argument is always called expr!®. For each

kind of expression, there is a keyword argument whose key has the same name
as the expr-kind (so for example :SYMBOL corresponds to expr-kind SYMBOL).
The expression giving the value for a particular variant may have free variables,
corresponding to that variant. The names of these variables follow the same
conventions as were used for expr-induct and expr-fn: for expression kinds
with no destructors (such as SYMBOL), the free variable is expr itself, left is used
for the binop-left subcomponent of a binop expression, and $left denotes the
value of a recursive call on left. In the case of a function with more than one
argument, the second and subsequent arguments are passed unchanged to the
recursive calls.

The symbol given after the argument list (here: equal) is the equivalence
relation that the function maintains on expr=; that is what is used for expr-fn=
in the functional instantiation.

7 Drawbacks of functional instantiation

There is no guarantee that the induction constraints for the type work! As
a simple example, if one neglected to write one of the two hypotheses for
expr-induct-binop, one would have no trouble proving expr-induct-thm, but
would be hard pressed to prove env-irrelevant by instantiating it.

18The macro doesn’t need to use functional instantiation for these proofs, of course.
19This may appear to be an annoying restriction, but the in the author’s experience, it is
not in practice.

13

Variables in constraints of functions being instantiated are not allowed to
be used at all in the goal being proved, so for example, the variable left may
not appear in a goal to be proved by defexprthm. This hasn’t proved to be a
practical problem.

Experienced users will recognize the similarity between the constraints on
expr-induct and the induction machine for functions like free-vars and eval-expr?’.
This should be no surprise. The problem is when variables other than expr
need to change during the induction. Sometimes it is necessary to combine in-
duction schemes from different functions to prove a goal, and it is remarkable
that ACL2 can usually do this. Such proofs cannot be proved by instantiating
expr-induct; since it only has a single argument, arguments other than expr
in recursive calls will be passed unchanged. One can define a more complex
version of expr-induct that has a second parameter whose value in recursive
calls is determined by still more constrained functions, but this may be more
complicated than it is worth.

ACL2 attempts destructor elimination only after the goal has been fully
simplified. If ACL2 did constructor elimination (triggered by a designated set
of destructors) immediately after creating inductive subgoals, and if the user
could suggest the new variable names to use, one could get the benefits of this
style without the problems associated with functional instantiation. The author
is not yet knowledgeable enough about the internals of ACL2 to experiment with
that.

8 Comparison with related techniques

The use of constructors and destructors may remind the reader of the ADD-SHELL
facility of NQTHM, or the defstructure macro defined in standard ACL2 book
books/data-structures/structures. However, there really is not much in
common. Those approaches introduce well-formedness predicates (something
like stack-p for a stack data type) that (generally) must be used in proofs
about the new data structures; the main point of this paper is to show how to
avoid using such well-formedness predicates in favor of equivalence relations.
Eventually, one may want to combine the two techniques, using well-formedness

predicates in guards for efficient execution and equivalence relations in theorems
to simplify proofs, but the author has not explored that yet.

9 Conclusion

The author has presented an example of how to define an equivalence relation
for a non-trivial data structure, together with its associated destructor and con-
structor functions, in order to be able to treat the data structure as an abstract

20 ACL2 prints the induction scheme it is going to use before starting an inductive proof,
following the phrase “We will induct”. If it was suggested by only one term, then it is (usually)
the induction machine for the functor of that term (or at least, so the author believes).

14

type. He also suggests a style of macro that makes it simpler to define functions
that recur on such types; the advantage of the macro is that it automatically
generates and proves the appropriate defcong. Finally, he shows how one may
define another macro to make inductive proofs on the data type use the type
constructors rather than the destructors, which seems to make intermediate
(unsolved) goals more readable. None of this is new, but it may be helpful to
see the various techniques worked out in this setting.

References

[1] Christopher T. Haynes Daniel P. Friedman, Mitchell Wand. FEssentials of
programming languages. McGraw-Hill, 1992.

[2] Matt Kaufmann and J Moore. An industrial strength theorem prover
for a logic based on common lisp. Transactions on Software Engineering,
23(4):203-213, April 1997.

15

