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Proof of Dickson’s lemma in ACL2
via an explicit ordinal mapping

by Mátyás Sustik

I present the use of the ACL2 theorem prover to formalize and mechanically check a
new proof of Dickson’s lemma about monomial sequences. Dickson’s lemma can be
used to establish the termination of the Buchberger algorithm to find the Gröbner basis
of a polynomial ideal. This effort is related to a larger project which aims to develop a
mechanically verified computer algebra system.
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Background

� A (polynomial) ideal
�

of an � ring is defined as a subset closed under subtraction
and under multiplication with arbitrary elements of � . �������	��
 �

, �
������
����������
 �

, ����������
 � .

� Classic example: modulo arithmetic in � . The ideal generated by � is the set:�! " � �"�$#&%'�"���(�)%(�*�(�"#&%(�  " " ,+ .
� Another example: the ideal generated by - � and ./- in �102-43 , the ring of polyno-

mials with integer coefficients consists of the polynomials which have a constant
coefficient equal to 0 and the coefficient of - is divisible by 3.

-6587:9�- � 7;/-<�>=?-@7:9BADC&- � 79EC"./-  

� The Gröbner basis is a uniquely determined special basis for a polynomial ideal;
its determination helps to decide equality of ideals presented with arbitrary gen-
erators.

� Buchberger’s algorithm takes an ideal given by a generator set and calculates the
Gröbner basis.

� The termination of the algorithm is established by Dickson’s lemma.

� Keith O. Geddes and S. R. Czapor and G. Labahn: Algorithms for Computer
Algebra
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Dickson’s lemma

� We consider terms over a finite set of symbols e.g.: - �� - ��- 5� .
� A monomial - ���� - ����  � " - ���	� �
�� � divides - ��� - ���  " " - ��	� �
�� � iff ��� ��� � for all possible

values of � .
� Claim: Given an infinite sequence of monomials: � � ��� �&��� 5 �

 � " 
exist ����� indices

such that ����� and ��� divides � � .
� Classical proofs may use Ramsey’s theorem about infinite graphs colored with

finitely many colors, or other non-constructive arguments to select certain subse-
quences.
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Dickson’s lemma
(auxiliary material)

� Classical proof sketch 1: There is a subsequence �!� � ���"� � ���"�$#��  " " such that the
exponent of the first variable in �!�&% is (weakly) increasing. Omit the first vari-
able from the terms and restrict to the above subsequence to set the stage for an
induction on the number of variables.

� Classical proof sketch 2: Suppose �!� does not divide � � for any �'�(� . Denote
the index of a ’witness’ variable by ) =������'A : the exponent of the variable is less
in �*� than in ��� . Consider the infinite complete graph on the positive integers
naturally colored by ) =������'A . Ramsey’s theorem asserts that there is an infinite
uniformly colored complete subgraph, which would imply the existence of an
infinite descending sequence of natural numbers, a contradiction.
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Ordinals

� Panagiotis Manolios and Daron Vroon: Algorithms for Ordinal Arithmetic, 19th
International Conference on Automated Deduction (CADE) 2003

� Additional ordinal lemmas. (About addition, exponentiation, and the notion of
less than equal relation among ordinals.)
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Ordinals
(auxiliary material)

� Ordinal addition is non-commutative, associative.

� # 7�� ��� ��� 7 # .
� Exponentiation is monoton.

� If �(� � �!� and
� � � � � then �(�D7 � � � �!�87 � � .

� Suppose �(� ���!� and
� � � � � . Does this imply that �4�D7 � � ���!� 7 � � ?

� Suppose �(� � �!� and
� � � � � . Does this imply that �4�D7 � � ���!� 7 � � ?
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Definition of the mapping

� Build an ordinal mapping which assigns an ordinal to the initial segments of the
monomial sequence such that: if no monomial divides another appearing later in
the sequence, then the ordinals form a decreasing sequence.

� I represent the monomials as k-tuples and denote by � 
 the collection of finite
sets of k-tuples:

� 
 � ������� 
��
	 � 	 � � +! 
� We define the � 
 � � 
� � ��� function inductively. If

� 
�� � then set

���"= � A ������� � �
with the agreement that � �"= �B+ A8� � .

� Now suppose that ��� # and that we have already defined � 
�� � . For an arbitrary� 
�� 
 and ��
 �
define the ����� �� 
!� 
�� � sets and the "#�$�%�� ordinals as follows:

����� �� � � = � � ��� � �  " " ��� 
�� �)A � = � � ��� � �  " " ��� 
�� �)A 
 � ��� � � � + �
"#��� �� �&� 
�� ��='����� �� A  
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Definition of the mapping
(auxiliary material)

� ���"= � .'�*�(�)9(�)( + A � 9  Note that
� � � �

.

�
� � � =�.'�*9!A��&=�9 �). A)�"=�# �);!A)�&=	9(�+*(A��&=	.'��; A + .

�,�$�%�� � �B+ "-�$�%�� ��� �
�,�$�%�� � � ; + "-�$�%�� � ;(�
� �$�%�� � � .'�.*4�); + " �$�%�� � .(�
�,�$�%�5 � � 9(��.'�+*4�); + "-�$�%�5 � 9 �
�,�$�%�/ � � 9(��.'�+*4�); + "-�$�%�/ � 9  
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Definition of the mapping
continued

� The � � , " � sequences stabilize for every
� 
�� 
 .

� Denote an index by � �(� �$�%� for which " � � " � for every � � � and define:

� 
 = � A �
��� � ��
��� � �
	��� 7��
	���� �  

� Define the partial sums that make up � 
 :

� 
 = � ���4A8��� ����� � ��� � �>#��� � � ���� � � 	���� 7 � 	 � � � ��� � � #
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Definition of the mapping
(auxiliary material)

�
� � � =�.'�*9!A��&=�9 �). A)�"=�# �);!A)�&=	9(�+*(A��&=	.'��; A + , � � . .

� "-�$�%�� � � , "-�$�%�� � ; , "#�$�%�� � . , "#�$�%�5 � 9 .
� By the definition:

����= � A � ���17 ���87 � 5 7�� 5  
� The following form reveals the intuition behind the definition:

� �&= � A � ��� 7���� 7�� 5 7 � � 7 � � 7  " "  
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Proof

1. If
����� 
�� 
 then � 
 = � A � � 
 = � A .

2. For any
� 
 � 
 , ��� # the " � sequence is monotone decreasing.

3. For any
� � � 
 � 
 , �!� # , � 
 = � A � � 
 = � A holds if and only if " ��� �� � " ��� �� is

true for every ��
 �
.

� Seven further lemmas lead to the proof of the above statement.
� An induction scheme is specified.
� Ordinal arithmetic lemmas are instantiated.
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Proof
(continued)

4 If
����� 
�� 
 , � 
 ��� � and � 
 = � A � � 
 = � A then there is a 	 
 �

such that
	 � 
 � .

� Witness functions are defined to allow formalization of some properties.
� If - 
�� ��� �� then there exists a 
<
 �

such that:


@� = � � ��� �*�  " " ��� 
�� �)A�� � � � ��� -<�>= � � �  " " ��� 
�� �)A  

5 If �������"�"�  " " ���� is a finite sequence of � -tuples of natural numbers such that for
any # � � � � ��� we have � ���� 
 � � then the � 
 = � �*A)�)� 
 = � ��A)�  � " � � 
 = � !A
sequence of ordinals is strictly decreasing where

� � denotes an initial segment of
��� : � � � � � � � # � � � � + .
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Proof— ACL2 events
(auxiliary material)

(defun tuple-set-filter (S i)
(cond ((endp S) NIL)

((and (consp (first S)) (<= (first (first S)) i))
(cons (first S) (tuple-set-filter (rest S) i)))

(T (tuple-set-filter (rest S) i))))

(defun tuple-set-projection (S)
(cond ((endp S) NIL)

((consp (first S))
(cons (rest (first S))

(tuple-set-projection (rest S))))
(T (tuple-set-projection (rest S)))))

(defun tuple-set->ordinal-partial-sum (k S i)
(declare (xargs :measure
(cons (1+ (nfix k))

(nfix (- (tuple-set-max-first S) i)))))
(cond ((or (not (natp k)) (not (natp i))) 0)

((zp k) 0)
((equal k 1)
(tuple-set-min-first S))

((<= (tuple-set-max-first S) i)
(oˆ (omega)

(o+ (tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection S)
0)

1)))
(T (o+

(oˆ (omega)
(tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-filter-projection S i)
0))

(tuple-set->ordinal-partial-sum k S
(1+ i))))))
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Proof—ACL2 events
(auxiliary material)

(defthm map-lemma-3.7
(implies (and (tuple-setp k A)

(tuple-setp k B)
(natp k)
(< 1 k)
(natp i)
(natp j)
(<= i j)
(equal
(tuple-set->ordinal-partial-sum k A i)
(tuple-set->ordinal-partial-sum k B i)))

(equal (equal (tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection
(tuple-set-filter A j))

0)
(tuple-set->ordinal-partial-sum
(1- k)
(tuple-set-projection
(tuple-set-filter B j))

0))
T))

(defthm dixon-map-thm
(implies (and (tuple-setp k S)

(consp S)
(natp k)
(<= 1 k)
(not (exists-partial-tuple-<=-set

k (rest S) (first S))))
(o< (tuple-set->ordinal k S)

(tuple-set->ordinal k (rest S)))))
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Summary

� The need for a machine verified proof of Dickson’s lemma lead to a new proof
different from the classical ones.

� The effort motivated the development of an ordinal book for ACL2 which may
well benefit other proof attempts as well.

� The proof enabled the verification of the termination of the Büchberger algorithm
implemented in ACL2.

� Used 23 function definitions two of them ordinal related. Proved 80 theorems
of which 26 was ordinal related (not counting the theorems imported from the
ordinal book referenced).
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