
ACL2 Workshop 2003

Typed ACL2 Records

David Greve and Matthew Wilding

Rockwell Collins Advanced Technology Center

Cedar Rapids, IA 52498 USA

fdagreve, mmwilding@rockwellcollins.com

Abstract

We show a macro for introducing operations on typed records. The

underlying theorems proved about these records include what is proved

about records introduced using the standard ACL2 record book [2], as

well as an additional theorem about the type of the elements.

1 Background

The standard ACL2 distribution contains a \records" book that provides an
unconventional implementation of two functions: g (for \get") and s (for \set").
The implementation allows for the proof of a simple set of theorems that are
useful for reasoning about records. 1

1. (equal (g a (s a v r)) v))

2. (implies (not (equal a b))

(equal (g a (s b v r)) (g a r))))

3. (equal (s a (g a r) r) r))

4. (equal (s a y (s a x r)) (s a y r)))

5. (implies (not (equal a b))

(equal (s b y (s a x r)) (s a x (s b y r))))

1Rob Sumners �rst suggested a records book with easy-to-use properties in discussions

with Matt Kaufmann. Kaufmann solved the problem, as did others (including the authors)

in response to his issuing a challenge to the ACL2 list. Kaufmann and Sumners ultimately

created a version that exploits the total order [3] added to ACL2 2.6, which is the version

that is distributed with ACL2 [2].

1



ACL2 Workshop 2003

These theorems have the desirable property that there are few hypotheses. In
particular, nothing need be established about the record structure for these
theorems to hold, which simpli�es proofs involving g and s. It is not at all
obvious that there exists an implementation of g and s such that these theo-
rems hold. For example, note that a straightforward implementation of these
functions using association list functions fails to satisfy property 5. It's hard to
de�ne functions that satisfy all of these properties with a single implementation!

2 A Modest Extension

We have found this formulation of records useful for modeling machine state for
models such as [1]. However, we discovered in late 2002 that we sometimes need
yet another theorem to hold of records: that the value returned by g is of an
appropriate type. That is, we require that

6. (typep (g a r))

for a typep predicate provided by us. Note that this fact is unconditional and
therefore easy to use in proofs about functions that are de�ned in terms of
record operations. However, as with the standard record implementation, it's
not obvious that there exists an implementation that has all these properties,
and an implementation satisfying each of the properties 1-6 was not initially
apparent to us. Note for example that a straightforward implementation that
uses the \standard" records book with the modi�cation that g \�xes" values
not of the record type fails to satisfy property 3.

The �le associated with this paper contains an extension to the ACL2 records
book that satis�es these requirements. We introduce the macro defrecord to
de�ne accessor and updater functions for a record structure with elements of a
particular type. The macro also introduces the needed theorems for this datas-
tructure, which includes theorems that are similar to the theorems introduced
in the standard ACL2 records book as well as an additional fact related to the
user-de�ned type function.

For example, the following sequence:

(defun sbp16 (x)

(declare (xargs :guard t))

(signed-byte-p 16 x))

(defun fix-sbp16 (x)

(declare (xargs :guard t))

(if (sbp16 x) x 0))

2



ACL2 Workshop 2003

(defrecord sbp :rd getbv :wr putbv :fix fix-sbp16 :typep sbp16)

introduces a \get" function getbv and the \set" function putbv that implement
those operations on the record. The user also provides a \�x" function that co-
erces its argument to a user-desired type and a \typep" predicate that identi�es
values of the right type. The macro introduces theorems that correspond to the
theorems of the standard ACL2 records books (with proper operation names)
except in two particulars.

� The \get-of-set" theorem of the ACL2 standard library (number 1 in the
list above) is modi�ed somewhat. A similar theorem re
ects the fact that
the values of the record are of the user-speci�ed type. As an example, the
invocation of defrecord above introduces the theorem

(defthm getbv-same-putbv-hyps

(implies (equal a b)

(equal (getbv a (putbv b v r))

(fix-sbp16 v))))

� defrecord introduces the desired type theorem. The invocation of defrecord
above introduces the theorem

(defthm sbp16-getbv (sbp16 (getbv a r)))

The implementations of the functions generated by this macro are obscure, but
the approach employed to enable hypothesis-free type rules are similar to those
used to guarantee hypothesis-free access and update rules.

The defrecord macro relies upon the currently-distributed records book doc-
umented in [3]. We believe that the macro generates theorems that prove au-
tomatically for all sensible parameters assuming that the appropriate functions
are enabled properly. The theorems prove automatically on all the examples to
which we have applied it.

It is easy to prove simple properties about operations on records that have been
introduced using defrecord. For example, the following proves quickly:

(defun swap (a1 a2 rec)

(putbv a1 (getbv a2 rec) (putbv a2 (getbv a1 rec) rec)))

(defthm swap-swap

(equal

(getbv addr (swap a1 a2 (swap a1 a2 x)))

(getbv addr x))

:hints (("goal" :in-theory (enable getbv-of-putbv-redux))))

3



ACL2 Workshop 2003

The swap-swap theorem could be proved about a record using the untyped
records of the standard ACL2 distribution. However, defrecord also provides
type information that can be useful. For example,

(defun addloc (l1 l2 rec)

(+ (getbv l1 rec) (getbv l2 rec)))

(verify-guards addloc)

The guard of the + macro requires that the arguments be numeric, which they
are known to be because of the type theorem.

3 Conclusion

The defrecord macro provides a convenient method by which to add conven-
tional record access functions and provides theorems we �nd useful for reasoning
about operations on those records.

References

[1] David Greve, Matthew Wilding, and David Hardin. High-speed, analyzable
simulators. In Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Aca-
demic Publishers, 2000. Also http://hokiepokie.org/docs.

[2] M. Kaufmann and R. Sumners. EÆcient rewriting of operations on �nite
structures in ACL2. In Proceedings of the Third International Workshop

on the ACL2 Theorem Prover and Its Applications, Grenoble, France, April
2002.

[3] Panagiotis Manolios and Matt Kaufmann. Adding a total order to ACL2.
In Proceedings of the Third International Workshop on the ACL2 Theorem

Prover and Its Applications, Grenoble, France, April 2002.

4


