
1

A Suite of Hard ACL2 Theorems
Arising in Refinement-Based

Processor Verification

Panagiotis (Pete) Manolios
Sudarshan Srinivasan

Georgia Institute of Technology

2

Introduction

Hardware verification is an area of strength for ACL2.
Efficiently executable microprocessor models.
Various levels of abstraction, including bit- & cycle-accurate.
Floating point verification.

We identify a class of “naturally arising” hardware
verification problems that are hard for ACL2.
But, other tools (UCLID) easily handle the problems.
Our goal is to stimulate research on improving ACL2.
We propose an approach on integrating decision
procedures and want feedback.

3

Outline

Processor Models.
Refinement.
Refinement in ACL2.
UCLID System.
Results.
Integrating UCLID with ACL2.
Conclusions and Future Work.

4

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model

5

Refinement, the Picture

Formal connection
between different
abstraction levels.
Compositional.
Avoid “Leaky
Abstractions.”

v

s w

u

rank.v < rank.w

r

r

r

PC

RF

IM

DM

PC

RF

IM

DM

ISA-Abstract

MA-Abstract

MA-Abstract2

MA-Bit-Level

RF

IM DM

RF

IM
32 32

32

32

32 32
32

DM

32

DM

DM

6

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

7

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

8

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

9

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

10

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

11

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

12

PC

Instruction
Memory

Decoding
Logic

Register
File

ALU
Exception

Interrupt

Misprediction

Data
Memory

IF1 IF2 ID EX M1 M2 WB

BP

ALU

Processor Model: Commitment

13

Refinement Maps

Commitment.
Partially executed instructions are invalidated.
Roll back the MA to the last committed instruction.
Requires an invariant that characterizes the reachable states
that we call the “Good MA” invariant.

Flushing.
Dual of commitment, partially executed instructions are
flushed.
Safety proof for our examples similar to Burch and Dill notion
of correctness.
No invariant required.

Refinement maps and the Good MA invariant are
implemented by stepping the processor model.

14

Refinement Theorems in ACL2
(defthm WEB_CORE
(implies
(and
(integerp fdpPC0)
(integerp depPC0)
(booleanp deRegWrite0)
…)

(let* ((ST0 (initialize fdpPC0 depPC0 ...))
(ST1 (simulate ST0 nil pc0 nil nil pc0

..))
...

(Good_MA_V (Good_MA_a
Equiv_MA_0
Equiv_MA_1
Equiv_MA_2
Equiv_MA_3
Equiv_MA_4))

…

(Rank_V (rank_a
(g 'mwWRT (g 'impl ST34))
(g 'emWRT (g 'impl ST34))
(g 'deWRT (g 'impl ST34))
(g 'fdWRT (g 'impl ST34))
ZERO))

(S_pc1 (g 'sPC (g 'speci ST35)))
(S_rf1 (g 'sRF (g 'speci ST35)))
(S_dmem1 (g 'sDMem (g 'speci ST35))))

(and
Good_MA_V
(or
(not
(and
(equal S_pc0 I_pc0)
(equal S_dmem0 I_dmem0))) …)

15

Refinement Theorems in ACL2

Historical perspective.
Considerable effort expended in automating refinement in ACL2.
Even so, refinement proofs of simple machines took >1,000 secs.
E.g., correctness of 5 stage pipeline (translated from UCLID) took
15.5 days for ACL2 to prove.
UCLID took 3 secs to prove the same theorem!

Our suite consists of refinement theorems translated
from UCLID specifications.
While far from perfect, the translator is reasonable.

Model written for ACL2: 130 secs.
Model translated from UCLID: 430 secs.

16

UCLID System
UCLID

Specification

CLU
Formula

Propositional
Formula

Valid/
Counter Example

Symbolic
Simulation

Decision
Procedure

SAT
Solver

Decision Procedure for CLU.
CLU: Counter arithmetic,
restricted lambda expressions,
and Uninterpreted functions.

17

Theorems and Results

19

17

16

15

6

5

5

3

1

1

UCLID

UCLID [sec]

170

163

187

160

263

233

300

29

2

2

Siege

189

180

203

175

269

238

305

32

3

3

Total

1,339,20015,4575,2855S-Part

1,339,20015,4575,2855S-SL

84,369,600241,34581,121FXS-BP-EX-INP-SL

80,352,000221,81274,591FXS-BP-EX-SL

90,619,200211,72371,184FXS-BP-SL

78,120,000159,01053,441FXS-SL

120,081,60072,32224,478CXS-BP-EX-INP-SL

106,243,20071,35024,149CXS-BP-EX-SL

136,152,00070,69323,913CXS-BP-SL

14,284,80036,92512,495CXS-SL

ACL2 [sec]
CNF

Clauses
CNF
Vars

Theorems

18

Integrating UCLID with ACL2
Core refinement theorem is CLU expressible.
Limitations of UCLID:

Abstract models.
Models not executable.
We ultimately want bit-level verification.
Restricted logic and specification language.
� Polluted models.
� Full refinement theorem not expressible.

Our approach: coarse grained integration.

19

AUA

U
Translation from ACL2 to

UCLID
Translation from
UCLID to UCLID

embedding in ACL2

Automated proof:
UA implies A

A : ACL2 theorem
U : UCLID formula
UA : Translation of U, using the embedding of UCLID in ACL2

Integrating UCLID with ACL2

20

Conclusions and Future Work

Presented a class of “naturally occurring”
problems that ACL2 has difficulty handling.
We hope to stimulate research in
improving ACL2.
Future work: Integrating decision
procedures (UCLID) with ACL2.

