MODEL-CHECKING IN DENSE REAL-TIME

SHANT HARUTUNIAN

1. Introduction

These slides are for a talk based on the paper Model-Checking in Dense RealTime, by Rajeev Alur, Costas Courcoubetis, and David Dill. The paper was published in Information and Computation 104(1):2-34, 1993 (preliminary version appeared in Proc. 5th LICS, 1990).

A URL to the paper is http://www.cis.upenn.edu/ alur/Lics90D.ps.gz.

The overview of CTL is based on a book chapter titled Model Checking and the Mu-calculus by E. Allen Emerson. This was published in Proceedings of the DIMACS Symposium on Descriptive Complexity and Finite Model, N. Immerman and P. Kolaitis, eds., American Mathematical Society Press, Pages 185-214. A URL to the book chapter is http://www.cs.utexas.edu/users/emerson/pubs/fmt96q.ps.

2. CTL (Computation Tree Logic)

2.1. Kripke Structure. A Kripke Structure is a triple (S, L, R), where
S is a set of states.
L is a mapping $L: S \rightarrow 2^{A P}$, where $A P$ is a set of atomic propositions.
$R \subseteq S \times S$ is a total relation, $\forall_{s \in S} \exists_{t \in S}$ s.t. $(s, t) \in R$

Figure 1. Sample Kripke Structure
2.2. Syntax. CTL is inductively defined as follows

S1 A proposition p in $A P$ is a state formula.
S2 If p and q are state formula, then $p \wedge q, \neg p$ are a state formula.
S3 If p is a path formula, then $E p$ and $A p$ are state formula.
P0 If p and q are state formula, then $X p$ and $p U q$ are path formula.

The state formulas generated by S1-S3 define the language of CTL.

Alternative rules, (replace S3 and P0 with Sa below).

Sa If p and q are state formula, then $A X p, E X p, A p U q$, and $E p U q$ are state formula.

We use the following abbreviations:

- $E F p$ for E true $U p$
- AFp for A true $U p$
- $E G p$ for $\neg(A$ true $U \neg p)$
- $A G p$ for $\neg(E$ true $U \neg p)$

Some sample CTL formulas are as follows:

- $E X p$
- $A p U q$
- $A G(p \Rightarrow A F q)$

2.3. Full Path.

- A full path is an infinite sequence of states
$s_{0}, s_{1}, s_{2}, \ldots$, where $\left(s_{i}, s_{i+1}\right) \in R$
- For a full path $x=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$, we denote by $x^{i}=\left(s_{i}, s_{i+1}, s_{i+2}, \ldots\right)$.

2.4. CTL Semantics.

- For a Kripke structure M and a state s_{0}, we write $M, s_{0} \models p$, for a state formula p
- For a Kripke structure M and a full path x, we write $M, x \models p$, for a path formula p

We define \models inductively:
S1 $M, s_{0} \models p$ iff $p \in L\left(s_{0}\right)$, for $p \in A P$
S2 $M, s_{0} \models p \wedge q$ iff $M, s_{0} \models p$ and $M, s_{0} \models q$
$M, s_{0} \models \neg p$ iff it is not the case that $M, s_{0} \models p$
S3 $M, s_{0} \models E p$ iff \exists a full path $x=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ in M, and $M, x \models p$
$M, s_{0} \models A p$ iff \forall full paths $x=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ in M, and $M, x \models p$
$\mathrm{P} 0 M, x \models p U q$ iff $\exists i, M, s_{i} \models q$ and $\forall_{j<i}, M, s_{j} \models p$ $M, x \models X p$ iff $M, s_{1} \models p$

Figure 2. Example CTL Model-Checking
We wish to determine for which states of the Kripke structure the property $\phi=E a U b$ holds.

We use the following algorithm to Model-Check the formula $\phi=E a U b$.

1 let $D=\emptyset$
2 for all $s \in S$, if $b \in L(s)$, then
add s to D, and
let $L(s)=L(s) \cup\{E a U b\}$
з $H=\emptyset$
4 While $H \neq D$ do
${ }_{4.1} H=D$
4.2 for all $s \in S \backslash H$,
if $\exists_{t}(s, t) \in R$, and $t \in H$, and $a \in L(s)$, then
add s to D, and
let $L(s)=L(s) \cup\{E a U b\}$
5 od

We step through the algorithm for the example structure.
${ }_{2} D=\left\{s_{3}\right\}$, and $L\left(s_{3}\right)=\{b\} \cup\{E a U b\}$
з $H=\emptyset$

$$
\begin{array}{rl}
{ }_{4.1, i 1} & H=\left\{s_{3}\right\} \\
{ }_{4.2, i 1} & S \backslash H=\left\{s_{0}, s_{1}, s_{2}\right\} \\
& D=\left\{s_{3}, s_{2}\right\}, \text { (we add } s_{2} \text { to the set) } \\
{ }_{4.3, i 1} & L\left(s_{2}\right)=\{a\} \cup\{E a U b\}, \text { (we add } \phi \text { to the labels of } s_{2} \text {) }
\end{array}
$$

$$
{ }_{4.1, i 2} H=\left\{s_{3}, s_{2}\right\}
$$

$$
{ }_{4.2, i 2} S \backslash H=\left\{s_{0}, s_{1}\right\}
$$

$$
D=\left\{s_{3}, s_{2}, s_{0}\right\}, \text { (we add } s_{0} \text { to the set) }
$$

$$
{ }_{4.3, i 2} L\left(s_{0}\right)=\{a\} \cup\{E a U b\}, \text { (we add } \phi \text { to the labels of } s_{0} \text {) }
$$

$$
{ }_{4.1, i 3} H=\left\{s_{3}, s_{2}, s_{0}\right\}
$$

$$
{ }_{4.2, i 3} S \backslash H=\left\{s_{1}\right\}
$$

$$
D=\left\{s_{3}, s_{2}, s_{0}\right\}, \text { (nothing is added to the set) }
$$

5 Exit loop (we exit the loop since $H=D$)

Figure 3. Labelled Kripke Structure at various steps in the Model-Checking Algorithm
3. Model-Checking in Dense Real-Time
3.1. Timed Graph. A tuple $\left(S, \mu, S_{i n i t}, E, C, \pi, \tau\right)$
S : A finite set of nodes.
$S_{\text {init }}$: A node in S designated as the start node.
$\mu: S \rightarrow 2^{A P}$, where $A P$ is a set of atomic propositions.
$E: E \subseteq S \times S$, the set of edges.
C : Finite set of clocks

- A clock is a variable ranging over the nonnegative Reals
$\pi: E \rightarrow 2^{C}$, indicates which clocks in C are reset along an edge in E.
τ : A function labelling each edge in E with an enabling condition built from boolean connectives of atomic formula of the form

$$
\begin{aligned}
& X \leq c \\
& c \leq X
\end{aligned}
$$

where X is a clock and $c \in N$.

Figure 4. Sample Timed Graph

3.2. Clock Assignments.

A clock assignments ν assigns a nonnegative real value to each clock in $C, \nu: C \rightarrow R$.

We let $\Gamma(G)$ denote the set of clock assignments for a timed graph G.

We use the following notation regarding clock assignments:

$$
\begin{aligned}
& \nu+t \text { for each } y \in C,[\nu+t](y)=\nu(y)+t \\
& {[x \mapsto t] \nu: \text { for each } y \in C} \\
& \quad y \neq x,[x \mapsto t] \nu(y)=\nu(y) \\
& \quad y=x,[x \mapsto t] \nu(y)=t
\end{aligned}
$$

3.3. (s, ν)-Run of a timed graph.

An infinite sequence of the following form

$$
\left(\left\langle s_{0}, \nu_{0}, t_{0}\right\rangle,\left\langle s_{1}, \nu_{1}, t_{1}\right\rangle,\left\langle s_{2}, \nu_{2}, t_{2}\right\rangle, \ldots\right)
$$

Initialization: $s_{0}=s, \nu_{0}=\nu$, and $t_{0}=0$.

Consecution: We have the following requirements regarding a transition from one component of the run to the next:

$$
t_{i+1}>t_{i}
$$

For edge $e_{i} \in E$, $e_{i}=\left\langle s_{i}, s_{i+1}\right\rangle$.
$\nu_{i+1}=\left[\pi\left(e_{i}\right) \mapsto 0\right]\left(\nu_{i}+t_{i+1}-t_{i}\right)$.
($\nu_{i}+t_{i+1}-t_{i}$) satisfies the enabling condition, $\tau\left(e_{i}\right)$.

Progress of time: For any $t \in R$, there exists i s.t.
$t_{i} \geq t$.
3.4. (s, ν)-Path.

We may derive a (s, ν)-Path from a (s, ν)-Run

$$
\begin{aligned}
& \rho: R \rightarrow S \times \Gamma(G) \\
& \rho(t)=\left\langle s_{j}, \nu_{j}+t-t_{j}\right\rangle \text { for } t_{j} \leq t<t_{j+1}
\end{aligned}
$$

3.5. Example (s, ν)-Run of a timed graph.

$$
\begin{aligned}
r_{1} \quad & \left(\left\langle s_{0},[0,0], 0\right\rangle,\left(\text { where }[0,0] \text { is }\left[\nu_{0}(x), \nu_{0}(y)\right]\right)\right. \\
& \left\langle s_{1},[0,0.5], 0.5\right\rangle, \\
& \left\langle s_{2},[1,0], 1.5\right\rangle, \\
& \left\langle s_{3},[1.7,0.7], 2.2\right\rangle, \\
& \left\langle s_{0},[3.7,2.7], 4.2\right\rangle, \\
& \left\langle s_{1},[0,2.8], 4.3\right\rangle, \\
& \left\langle s_{2},[0.1,0], 4.4\right\rangle, \\
& \left\langle s_{3},[1.1,1], 5.4\right\rangle, \\
& \left\langle s_{0},[3.1,3], 4.2+3.2 i\right\rangle, \\
& \left\langle s_{1},[0,3.1], 4.2+3.2 i+0.1\right\rangle, \\
& \left\langle s_{2},[0.1,0], 4.2+3.2 i+0.2\right\rangle, \\
& \left.\left\langle s_{3},[1.1,1], 4.2+3.2 i+1.2\right\rangle\right), \text { for all } i>0 . \\
& \\
\rho_{r_{1}}: \quad \rho_{r_{1}} & (4.25)=\left\langle s_{0},[3.75,2.75]\right\rangle
\end{aligned}
$$

3.6. Example Sequences that are NOT Runs.

seq ${ }_{1}$
$\left(\left\langle s_{0},[0,0], 0\right\rangle\right.$,
$\left\langle s_{1},[0,1], 1\right\rangle$,
$\left.\left\langle s_{2},[3,0], 4\right\rangle\right)$

The above sequence is not a run since it is finite.
$s e q_{2}$
$\left(\left\langle s_{0},[0,0], 0\right\rangle\right.$,
$\left.\left\langle s_{0},\left[t_{i}, t_{i}\right], t_{i}\right\rangle\right)$, where $t_{i}=\sum_{k=0}^{i} \frac{1}{2^{k}}$, for all $i \geq 0$.
In the above sequence, for all $i, t_{i}<2$.

The above sequence is infinite but it is not a run because it does not satisfy the progress requirement of a run: for all $t \in R$, there exists i where $t_{i} \geq t$.

3.7. TCTL (Timed CTL) Syntax.

S1 $p \in A P$ is a TCTL formula
S2 If ϕ_{1} and ϕ_{2} are TCTL formulas, then so are $\phi_{1} \wedge \phi_{2}$ and $\neg \phi_{1}$

S3 If ϕ_{1} and ϕ_{2} are TCTL formulas, then so are $A \phi_{1} U_{\sim}{ }_{c} \phi_{2}$ and $E \phi_{1} U_{\sim c} \phi_{2}$

Where $\sim \in\{<, \leq,=, \geq,>\}$ and $c \in N$
The class of formula generated by S1-S3 is the language of TCTL.

3.8. TCTL Semantics.

We assume that ρ is a $\langle s, \nu\rangle$-path of a timed transition system M based on a timed graph G, and $s=\left\langle s_{0}, \nu\right\rangle$ is a state in $S \times \Gamma(G)$.

S1 $M, s \models p$, iff $p \in \mu\left(s_{0}\right)$ for a $p \in A P$
S2 $M, s \models \phi_{1} \wedge \phi_{2}$ iff $M, s \models \phi_{1}$ and $M, s \models \phi_{2}$ $M, s \models \neg \phi_{1}$ iff it is not the case that $M, s \models \phi_{1}$, for TCTL formulas ϕ_{1} and ϕ_{2}

S3 $M, s \models E \phi_{1} U_{\sim c} \phi_{2}$ iff for some path ρ, for some $t \sim c$, $M, \rho(t) \models \phi_{2}$, and for $0 \leq t^{\prime}<t, M, \rho\left(t^{\prime}\right) \models \phi_{1}$
$M, s \models A \phi_{1} U_{\sim} \phi_{2}$ iff for all paths ρ, for some $t \sim c$, $M, \rho(t) \models \phi_{2}$, and for $0 \leq t^{\prime}<t, M, \rho\left(t^{\prime}\right) \models \phi_{1}$

3.9. Equivalence of Clock Assignments.

For all $x \in C$, let c_{x} be the largest constant with which x is compared

Two clock assignments are equivalent $\left(\nu \cong \nu^{\prime}\right)$ iff:

- For each $x \in C,\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$, or both $\nu(x)$ and $\nu^{\prime}(x)$ are greater than c_{x}
- For each pair $x, y \in C$,
s.t. $\nu(x) \leq c_{x}$ and $\nu(y) \leq c_{y}$,

1. $\operatorname{fract}(\nu(x)) \leq \operatorname{fract}(\nu(y))$ iff $\operatorname{fract}\left(\nu^{\prime}(x)\right) \leq \operatorname{fract}\left(\nu^{\prime}(y)\right)$
2. $\operatorname{fract}(\nu(x))=0$ iff $\operatorname{fract}\left(\nu^{\prime}(x)\right)=0$

Our goal is to show that for equivalent clock assignment ν and ν^{\prime}, a TCTL formula ϕ, and $s \in S, M,\langle s, \nu\rangle \models$ ϕ iff $M,\left\langle s, \nu^{\prime}\right\rangle \models \phi$.

Figure 5. Equivalence Regions of Clocks $\{x, y\}$

3.10. Successor Region.

Let α be an equivalence class of the clock assignments $(\Gamma(G))$.

We denote that β is an equivalence class that is the successor of $\alpha, \beta=\operatorname{Succ}(\alpha)$, iff:

For a positive $t \in R$, and for $\nu \in \alpha,(\nu+t) \in \beta$, and for all $t^{\prime}<t,\left(\nu+t^{\prime}\right) \in \alpha \cup \beta$.

Figure 6. Example-1: Successor Regions $\left(c_{x}=1, c_{y}=2\right)$

Figure 7. Example-2: Successor Regions $\left(c_{x}=1, c_{y}=2\right)$

Figure 8. Example-3: Successor Regions $\left(c_{x}=1, c_{y}=2\right)$

Figure 9. Example-4: Successor Regions $\left(c_{x}=1, c_{y}=2\right)$

3.11. Clock Regions vs. Augmented Clock Regions.

 To the clock set C, add a clock x, not in C, that is not reset by any edge in the timed graph G. The clock regions resulting from the addition of x are called the augmented clock regions.We denote by c_{x} the largest integer constant appearing in the TCTL formula.

The augmented clock regions refine a clock region due to the addition of the extra clock x.

Example clock region...
$\{0<y<1\}$
\ldots and its augmented clock regions (assume $c_{x}=1$):
$\{0<y<1, x=0\},\{0<y<1,0<x<1\}$, $\{0<y<1, x=1\},\{0<y<1, x>1\}$

We write C^{*} to represent the clock set with the added clock x.

We denote by $[\nu]^{*}$ the equivalence class with respect to the equivalence relation for clock assignments with clocks in C^{*}.

3.12. Region Graph.

The region graph consists of vertices V that is the product of the set of augmented regions with the nodes S of timed graph G.

The edges of the region graph are defined as follows;
Edges representing the passage of time: Each vertex $\langle s, \alpha\rangle$, where α is not an end class, has an edge to $\langle s, \operatorname{succ}(\alpha)\rangle$

Edges representing transitions in G : Each vertex $\langle s, \alpha\rangle$ for each edge $e=\left\langle s, s^{\prime}\right\rangle$, has an edge to $\left\langle s^{\prime},[[\pi(e) \mapsto 0] \nu]\right\rangle$, provided that
i) α is not a boundary class*, and
ii) Either $\nu \in \alpha$ or $\nu \in \operatorname{succ}(\alpha)$, and
iii) ν satisfies the enabling condition $\tau(e)$.

* A boundary class α is such that for a positive real t and all ν in $\alpha, \nu+t$ is not equivalent to ν.

Examples:
$\{x=0,1<y<2\}$, $\{x=1, y=2\}$
where $c_{x}=1$, and $c_{y}=2$.

Figure 10. Timed Graph-1 and its Region Graph $\left(c_{x}=1, c_{y}=1\right)$

$\mathrm{f}(\mathrm{x})=\operatorname{fract}(\mathrm{x})$
Graph only shows edges to vertices reachable from $<S_{0},[x=y=0]>$

Figure 11. Timed Graph-2 and its Region Graph $\left(c_{x}=1, c_{y}=1\right)$

3.13. Fair Paths in the Region Graph.

- A path through the region graph is an infinite sequence of vertices in the region graph $\left\langle v_{1}, v_{2}, v_{3}, \ldots\right\rangle$, such that v_{i} has an edge to v_{i+1}.
- A path is fair if every clock in C^{*} is either reset infinitely often or is eventually always increasing.
- Hence, for all fair paths β through the region graph, for each clock $y \in C^{*}$, infinitely many vertices along the path β satisfy either $y=0$, or $y>c_{y}$.
- In labelling the region graph, for each vertex v, for each clock $y \in C^{*}$, label vertex v with

$$
\begin{aligned}
& p_{y=0} \text { if } y=0 \text { in } v \\
& p_{y>c_{y}} \text { if } y>c_{y} \text { in } v
\end{aligned}
$$

- Using Fair CTL, with clock set $C^{*}=\{x, y, z\}$, the fairness condition would be

$$
\stackrel{\infty}{\mathrm{F}}\left(p_{x=0} \vee p_{x>c_{x}}\right) \wedge \stackrel{\infty}{\mathrm{F}}\left(p_{y=0} \vee p_{y>c_{y}}\right) \wedge \stackrel{\infty}{\mathrm{F}}\left(p_{z=0} \vee p_{z>c_{z}}\right),
$$

Where $\stackrel{\infty}{\mathrm{F}} x$ denotes that the proposition x is true infinitely often along a path.

3.14. A Graph Labelling Algorithm.

For vertices in the region graph, every subscript $\sim c$ appearing in TCTL formula ϕ, label the vertex with $p_{\sim c}$ iff at vertex $\left\langle s,[\nu]^{*}\right\rangle, \nu \models x \sim c$.

Also label vertices with P_{b} if a vertex represents a boundary class.

For a formula of the form $E p U_{\sim c} q$, where p and q are propositions, label $v=\left\langle s,[\nu]^{*}\right\rangle^{\dagger}$ with ϕ iff:

For some fair path starting at $\left\langle s,[[x \mapsto 0] \nu]^{*}\right\rangle$,
Has a prefix $\left(v_{1}, v_{2}, v_{3}, \ldots\right)$ such that

- For each $i \leq n, v_{i}$ is labelled with p, and
- v_{n} is labelled with q and
- v_{n} is labelled with $p \sim c$, and
- v_{n} is either labelled with p_{b} or p.
${ }^{\dagger}$ When labelling a vertex $\left\langle s,[\nu]^{*}\right\rangle$ with ϕ, where [$\nu]^{*}$ is a refinement of a clock region α, we also label $\left\langle s,\left[\nu^{\prime}\right]^{*}\right\rangle$ with ϕ, where $\left[\nu^{\prime}\right]^{*}\left(\neq[\nu]^{*}\right)$ is a refinement of the same clock region α.

$\mathrm{x}=\mathrm{z}$, holds at all vertices.
Graph only shows vertices reachable from $<\mathrm{S}_{0},[\mathrm{x}=\mathrm{y}=\mathrm{z}=0]>$

Figure 12. Example TCTL Model-Checking

3.15. A Procedure Using Fair CTL to Model-Check a Region Graph.

- Remove vertices, and associated edges, from the region graph that do not have an outgoing edge (repeat this step until all such vertices are removed).
- For vertices in the region graph, every subscript $\sim c$ appearing in TCTL formula ϕ, label the vertex with $p_{\sim c}$ iff at vertex $\left\langle s,[\nu]^{*}\right\rangle, \nu \models x \sim c$.
- Also label vertices with P_{b} if a vertex represents a boundary class.
- For a TCTL formula ϕ of the form

$$
E \phi_{1} U_{\sim c} \phi_{2},
$$

we use the Fair CTL formula ϕ^{\prime} of the form

$$
E \phi_{1} U p_{c} \wedge \phi_{2} \wedge\left(p_{b} \vee \phi_{1}\right)
$$

- We assume that all TCTL subformulas ϕ_{1} and ϕ_{2} of TCTL formula ϕ have already been checked using this procedure. (i.e., the graph is already labelled with ϕ_{1} and ϕ_{2})
- For each vertex v, for each clock $y \in C^{*}$, label vertex v with

$$
\begin{aligned}
& p_{y=0} \text { if } y=0 \text { in } v \\
& p_{y>c_{y}} \text { if } y>c_{y} \text { in } v
\end{aligned}
$$

- Using Fair CTL, with clock set C^{*}, the fairness condition is

$$
\bigwedge_{y \in C^{*}} \stackrel{\infty}{\mathrm{~F}}\left(p_{y=0} \vee p_{y>c_{y}}\right)
$$

- We assume that the Fair CTL Model-Checker returns the set of vertices $S_{\phi^{\prime}}$ that satisfy the given formula ϕ^{\prime}, but does not label the graph with ϕ^{\prime}.
- Remove those vertices from $S_{\phi^{\prime}}$ where $x \neq 0$.
- For the vertices that remain in $S_{\phi^{\prime}}$, label each vertex with ϕ.
- When labelling a vertex $\left\langle s,[\nu]^{*}\right\rangle$ with ϕ, where $[\nu]^{*}$ is a refinement of a clock region α, we also label $\left\langle s,\left[\nu^{\prime}\right]^{*}\right\rangle$ with ϕ, where $\left[\nu^{\prime}\right]^{*}\left(\neq[\nu]^{*}\right)$ is a refinement of the same clock region α.

