MODEL-CHECKING IN DENSE REAL-TIME

SHANT HARUTUNIAN

1. INTRODUCTION

These slides are for a talk based on the paper **Model-Checking in Dense Real-Time**, by Rajeev Alur, Costas Courcoubetis, and David Dill. The paper was published in *Information and Computation* 104(1):2-34, 1993 (preliminary version appeared in *Proc. 5th LICS*, 1990).

A URL to the paper is http://www.cis.upenn.edu/ alur/Lics90D.ps.gz.

The overview of CTL is based on a book chapter titled **Model Checking and** the Mu-calculus by E. Allen Emerson. This was published in *Proceedings of the DIMACS Symposium on Descriptive Complexity and Finite Model*, N. Immerman and P. Kolaitis, eds., American Mathematical Society Press, Pages 185-214. A URL to the book chapter is http://www.cs.utexas.edu/users/emerson/pubs/fmt96q.ps.

2. CTL (COMPUTATION TREE LOGIC)

2.1. Kripke Structure. A Kripke Structure is a triple (S, L, R), where

- S is a set of states.
- L is a mapping $L: S \to 2^{AP}$, where AP is a set of atomic propositions.
- $R \subseteq S \times S$ is a total relation, $\forall_{s \in S} \exists_{t \in S}$ s.t. $(s, t) \in R$

FIGURE 1. Sample Kripke Structure

- 2.2. Syntax. CTL is inductively defined as follows
 - S1 A proposition p in AP is a state formula.
 - S2 If p and q are state formula, then $p \wedge q$, $\neg p$ are a state formula.
 - S3 If p is a path formula, then Ep and Ap are state formula.
 - P0 If p and q are state formula, then Xp and pUq are path formula.

The state formulas generated by S1-S3 define the language of CTL.

Alternative rules, (replace S3 and P0 with Sa below).

Sa If p and q are state formula, then AXp, EXp, ApUq, and EpUq are state formula.

We use the following abbreviations:

- EFp for E true Up
- AFp for A true Up
- EGp for $\neg(A \ true \ U\neg p)$
- AGp for $\neg(E \ true \ U \neg p)$

Some sample CTL formulas are as follows:

- EXp
- $\bullet \ ApUq$
- $AG(p \Rightarrow AFq)$

2.3. Full Path.

- A full path is an infinite sequence of states s_0, s_1, s_2, \ldots , where $(s_i, s_{i+1}) \in R$
- For a full path $x = (s_0, s_1, s_2, ...),$ we denote by $x^i = (s_i, s_{i+1}, s_{i+2}, ...).$

2.4. CTL Semantics.

- For a Kripke structure M and a state s_0 , we write $M, s_0 \models p$, for a state formula p
- For a Kripke structure M and a full path x, we write $M, x \models p$, for a path formula p

We define \models inductively:

S1 $M, s_0 \models p$ iff $p \in L(s_0)$, for $p \in AP$

S2
$$M, s_0 \models p \land q$$
 iff $M, s_0 \models p$ and $M, s_0 \models q$

- $M, s_0 \models \neg p$ iff it is not the case that $M, s_0 \models p$
- S3 $M, s_0 \models Ep$ iff \exists a full path $x = (s_0, s_1, s_2, ...)$ in M, and $M, x \models p$ $M, s_0 \models Ap$ iff \forall full paths $x = (s_0, s_1, s_2, ...)$ in M, and $M, x \models p$
- P0 $M, x \models pUq$ iff $\exists i, M, s_i \models q$ and $\forall_{j < i}, M, s_j \models p$ $M, x \models Xp$ iff $M, s_1 \models p$

FIGURE 2. Example CTL Model-Checking

We wish to determine for which states of the Kripke structure the property $\phi = EaUb$ holds.

We use the following algorithm to Model-Check the formula $\phi = EaUb$.

```
1 let D = \emptyset

2 for all s \in S, if b \in L(s), then

add s to D, and

let L(s) = L(s) \cup \{EaUb\}

3 H = \emptyset

4 While H \neq D do

4.1 H = D

4.2 for all s \in S \setminus H,

if \exists_t (s,t) \in R, and t \in H, and a \in L(s),

then

add s to D, and

let L(s) = L(s) \cup \{EaUb\}
```

5 od

We step through the algorithm for the example structure.

2
$$D = \{s_3\}$$
, and $L(s_3) = \{b\} \cup \{EaUb\}$
3 $H = \emptyset$

4.1,*i*1
$$H = \{s_3\}$$

4.2,*i*1 $S \setminus H = \{s_0, s_1, s_2\}$
 $D = \{s_3, s_2\}$, (we add s_2 to the set)
4.3,*i*1 $L(s_2) = \{a\} \cup \{EaUb\}$,(we add ϕ to the labels of s_2)

4.1,*i*2
$$H = \{s_3, s_2\}$$

4.2,*i*2 $S \setminus H = \{s_0, s_1\}$
 $D = \{s_3, s_2, s_0\}$, (we add s_0 to the set)
4.3,*i*2 $L(s_0) = \{a\} \cup \{EaUb\}$,(we add ϕ to the labels of s_0)

4.1,*i*3
$$H = \{s_3, s_2, s_0\}$$

4.2,*i*3 $S \setminus H = \{s_1\}$
 $D = \{s_3, s_2, s_0\}$, (nothing is added to the set)

5 Exit loop (we exit the loop since H = D)

FIGURE 3. Labelled Kripke Structure at various steps in the Model-Checking Algorithm

3. Model-Checking in Dense Real-Time

3.1. Timed Graph. A tuple $(S, \mu, S_{init}, E, C, \pi, \tau)$

- S: A finite set of *nodes*.
- S_{init} : A node in S designated as the start node.
 - $\mu: S \to 2^{AP}$, where AP is a set of atomic propositions.
 - $E: E \subseteq S \times S$, the set of edges.
 - C: Finite set of clocks
 - A clock is a variable ranging over the nonnegative Reals

- $\pi: E \to 2^C$, indicates which clocks in C are reset along an edge in E.
- au: A function labelling each edge in E with an enabling condition built from boolean connectives of atomic formula of the form

$$\begin{split} &X \leq c \\ &c \leq X \\ &\text{where } X \text{ is a clock and } c \in N. \end{split}$$

FIGURE 4. Sample Timed Graph

3.2. Clock Assignments.

A clock assignments ν assigns a nonnegative real value to each clock in $C, \nu : C \to R$.

We let $\Gamma(G)$ denote the set of clock assignments for a timed graph G.

We use the following notation regarding clock assignments:

$$\nu + t \text{ for each } y \in C, \ [\nu + t](y) = \nu(y) + t$$
$$[x \mapsto t]\nu; \text{ for each } y \in C$$
$$y \neq x, [x \mapsto t]\nu(y) = \nu(y)$$
$$y = x, [x \mapsto t]\nu(y) = t$$

3.3. (s, ν) -Run of a timed graph.

An *infinite* sequence of the following form $(\langle s_0, \nu_0, t_0 \rangle, \langle s_1, \nu_1, t_1 \rangle, \langle s_2, \nu_2, t_2 \rangle, \ldots)$

Initialization: $s_0 = s$, $\nu_0 = \nu$, and $t_0 = 0$.

Consecution: We have the following requirements regarding a transition from one component of the run to the next:

$$\begin{split} t_{i+1} &> t_i.\\ \text{For edge } e_i \in E, \ e_i = \langle s_i, s_{i+1} \rangle.\\ \nu_{i+1} &= [\pi(e_i) \mapsto 0] (\nu_i + t_{i+1} - t_i).\\ (\nu_i + t_{i+1} - t_i) \text{ satisfies the enabling condition, } \tau(e_i). \end{split}$$

Progress of time: For any $t \in R$, there exists i s.t. $t_i \ge t$.

3.4. (s, ν) -Path. We may derive a (s, ν) -Path from a (s, ν) -Run $\rho: R \to S \times \Gamma(G)$ $\rho(t) = \langle s_i, \nu_i + t - t_i \rangle$ for $t_i \leq t < t_{i+1}$ 3.5. Example (s, ν) -Run of a timed graph. $(\langle s_0, [0,0], 0 \rangle, (\text{where } [0,0] \text{ is } [\nu_0(x), \nu_0(y)])$ r_1 $\langle s_1, [0, 0.5], 0.5 \rangle$, $\langle s_2, [1,0], 1.5 \rangle$, $\langle s_3, [1.7, 0.7], 2.2 \rangle,$ $\langle s_0, [3.7, 2.7], 4.2 \rangle$, $\langle s_1, [0, 2.8], 4.3 \rangle,$ $\langle s_2, [0.1, 0], 4.4 \rangle,$ $\langle s_3, [1.1, 1], 5.4 \rangle$, $\langle s_0, [3.1, 3], 4.2 + 3.2i \rangle$, $\langle s_1, [0, 3.1], 4.2 + 3.2i + 0.1 \rangle$, $\langle s_2, [0.1, 0], 4.2 + 3.2i + 0.2 \rangle$,

$$\langle s_3, [1.1, 1], 4.2 + 3.2i + 1.2 \rangle$$
, for all $i > 0.4$

 $\rho_{r_1}: \ \rho_{r_1}(4.25) = \langle s_0, [3.75, 2.75] \rangle$

3.6. Example Sequences that are NOT Runs.

 seq_1

 $(\langle s_0, [0, 0], 0 \rangle, \\ \langle s_1, [0, 1], 1 \rangle, \\ \langle s_2, [3, 0], 4 \rangle)$

The above sequence is *not* a run since it is finite.

 seq_2

$$(\langle s_0, [0, 0], 0 \rangle,$$

 $\langle s_0, [t_i, t_i], t_i \rangle), \text{ where } t_i = \sum_{k=0}^{i} \frac{1}{2^k}, \text{ for all } i \ge 0.$

In the above sequence, for all $i, t_i < 2$.

The above sequence is infinite but it is *not* a run because it does not satisfy the *progress* requirement of a run: for all $t \in R$, there exists *i* where $t_i \geq t$.

3.7. TCTL (Timed CTL) Syntax.

- S1 $p \in AP$ is a TCTL formula
- S2 If ϕ_1 and ϕ_2 are TCTL formulas, then so are $\phi_1 \wedge \phi_2$ and $\neg \phi_1$
- S3 If ϕ_1 and ϕ_2 are TCTL formulas, then so are $A\phi_1 U_{\sim c}\phi_2$ and $E\phi_1 U_{\sim c}\phi_2$

Where $\sim \in \{<, \leq, =, \geq, >\}$ and $c \in N$

The class of formula generated by S1-S3 is the language of TCTL.

3.8. TCTL Semantics.

We assume that ρ is a $\langle s, \nu \rangle$ -path of a timed transition system M based on a timed graph G, and $s = \langle s_0, \nu \rangle$ is a state in $S \times \Gamma(G)$.

- S1 $M, s \models p$, iff $p \in \mu(s_0)$ for a $p \in AP$
- S2 $M, s \models \phi_1 \land \phi_2$ iff $M, s \models \phi_1$ and $M, s \models \phi_2$ $M, s \models \neg \phi_1$ iff it is not the case that $M, s \models \phi_1$, for TCTL formulas ϕ_1 and ϕ_2
- S3 $M, s \models E\phi_1 U_{\sim c}\phi_2$ iff for some path ρ , for some $t \sim c$, $M, \rho(t) \models \phi_2$, and for $0 \le t' < t, M, \rho(t') \models \phi_1$

 $M, s \models A\phi_1 U_{\sim c}\phi_2$ iff for all paths ρ , for some $t \sim c$, $M, \rho(t) \models \phi_2$, and for $0 \le t' < t$, $M, \rho(t') \models \phi_1$

3.9. Equivalence of Clock Assignments.

For all $x \in C$, let c_x be the largest constant with which x is compared

Two clock assignments are equivalent $(\nu \cong \nu')$ iff:

- For each $x \in C$, $\lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$, or both $\nu(x)$ and $\nu'(x)$ are greater than c_x
- For each pair $x, y \in C$, s.t. $\nu(x) \le c_x$ and $\nu(y) \le c_y$,
 - 1. $fract(\nu(x)) \leq fract(\nu(y))$ iff $fract(\nu'(x)) \leq fract(\nu'(y))$

2.
$$fract(\nu(x)) = 0$$
 iff $fract(\nu'(x)) = 0$

Our goal is to show that for equivalent clock assignment ν and ν' , a TCTL formula ϕ , and $s \in S, M, \langle s, \nu \rangle \models \phi$ iff $M, \langle s, \nu' \rangle \models \phi$.

FIGURE 5. Equivalence Regions of Clocks $\{x, y\}$

3.10. Successor Region.

Let α be an equivalence class of the clock assignments $(\Gamma(G))$.

We denote that β is an equivalence class that is the successor of α , $\beta = Succ(\alpha)$, iff:

For a positive $t \in R$, and for $\nu \in \alpha$, $(\nu + t) \in \beta$, and for all t' < t, $(\nu + t') \in \alpha \cup \beta$.

FIGURE 6. Example-1: Successor Regions $(c_x = 1, c_y = 2)$

FIGURE 7. Example-2: Successor Regions $(c_x = 1, c_y = 2)$

FIGURE 8. Example-3: Successor Regions $(c_x = 1, c_y = 2)$

FIGURE 9. Example-4: Successor Regions $(c_x = 1, c_y = 2)$

3.11. Clock Regions vs. Augmented Clock Regions. To the clock set C, add a clock x, not in C, that is not reset by any edge in the timed graph G. The clock regions resulting from the addition of x are called the *augmented clock regions*.

We denote by c_x the largest integer constant appearing in the TCTL formula.

The augmented clock regions refine a clock region due to the addition of the extra clock x.

Example clock region . . . $\{0 < y < 1\}$

... and its augmented clock regions (assume $c_x = 1$): {0 < y < 1, x = 0}, {0 < y < 1, 0 < x < 1}, {0 < y < 1, x = 1}, {0 < y < 1, x > 1}

We write C^* to represent the clock set with the added clock x.

We denote by $[\nu]^*$ the equivalence class with respect to the equivalence relation for clock assignments with clocks in C^* .

3.12. Region Graph.

The region graph consists of vertices V that is the product of the set of augmented regions with the nodes S of timed graph G.

The edges of the region graph are defined as follows;

Edges representing the passage of time: Each vertex $\langle s, \alpha \rangle$, where α is not an end class, has an edge to $\langle s, succ(\alpha) \rangle$

Edges representing transitions in G: Each vertex $\langle s, \alpha \rangle$ for each edge $e = \langle s, s' \rangle$, has an edge to $\langle s', [[\pi(e) \mapsto 0]\nu] \rangle$, provided that

- i) α is not a boundary class^{*}, and
- ii) Either $\nu \in \alpha$ or $\nu \in succ(\alpha)$, and
- iii) ν satisfies the enabling condition $\tau(e)$.
 - * A boundary class α is such that for a positive real t and all ν in α , $\nu + t$ is not equivalent to ν .

Examples:

$$\{ x = 0, 1 < y < 2 \}, \\ \{ x = 1, y = 2 \}$$

where $c_x = 1$, and $c_y = 2$.

f(x) = fract(x)

Graph only shows edges to vertices reachable from < S $_{0},$ [x = y = 0] >

FIGURE 10. Timed Graph-1 and its Region Graph $\left(c_x=1,c_y=1\right)$

Graph only shows edges to vertices reachable from < S $_{0},$ [x = y = 0] >

FIGURE 11. Timed Graph-2 and its Region Graph $\left(c_x=1,c_y=1\right)$

3.13. Fair Paths in the Region Graph.

- A path through the region graph is an infinite sequence of vertices in the region graph $\langle v_1, v_2, v_3, \ldots \rangle$, such that v_i has an edge to v_{i+1} .
- A path is fair if every clock in C^* is either reset infinitely often or is eventually always increasing.
- Hence, for all fair paths β through the region graph, for each clock $y \in C^*$, infinitely many vertices along the path β satisfy either y = 0, or $y > c_y$.
- In labelling the region graph, for each vertex v, for each clock $y \in C^*$, label vertex v with

 $p_{y=0}$ if y=0 in v

 $p_{y>c_y}$ if $y>c_y$ in v

• Using Fair CTL, with clock set $C^* = \{x, y, z\}$, the fairness condition would be

$$\overset{\infty}{\mathrm{F}}(p_{x=0} \vee p_{x>c_x}) \wedge \overset{\infty}{\mathrm{F}}(p_{y=0} \vee p_{y>c_y}) \wedge \overset{\infty}{\mathrm{F}}(p_{z=0} \vee p_{z>c_z}),$$

Where $\overset{\infty}{\mathrm{F}} x$ denotes that the proposition x is true infinitely often along a path.

3.14. A Graph Labelling Algorithm.

For vertices in the region graph, every subscript $\sim c$ appearing in TCTL formula ϕ , label the vertex with $p_{\sim c}$ iff at vertex $\langle s, [\nu]^* \rangle, \nu \models x \sim c$.

Also label vertices with P_b if a vertex represents a boundary class.

For a formula of the form $EpU_{\sim c}q$, where p and q are propositions, label $v = \langle s, [\nu]^* \rangle^{\dagger}$ with ϕ iff:

For some fair path starting at $\langle s, [[x \mapsto 0]\nu]^* \rangle$,

Has a prefix (v_1, v_2, v_3, \ldots) such that

- For each $i \leq n, v_i$ is labelled with p, and
- v_n is labelled with q and
- v_n is labelled with $p \sim c$, and
- v_n is either labelled with p_b or p.

[†] When labelling a vertex $\langle s, [\nu]^* \rangle$ with ϕ , where $[\nu]^*$ is a refinement of a clock region α , we also label $\langle s, [\nu']^* \rangle$ with ϕ , where $[\nu']^* \ (\neq [\nu]^*)$ is a refinement of the same clock region α .

Graph only shows vertices reachable from $< S_0$, [x = y = z = 0] >

FIGURE 12. Example TCTL Model-Checking

3.15. A Procedure Using Fair CTL to Model-Check a Region Graph.

- Remove vertices, and associated edges, from the region graph that do not have an outgoing edge (repeat this step until all such vertices are removed).
- For vertices in the region graph, every subscript $\sim c$ appearing in TCTL formula ϕ , label the vertex with $p_{\sim c}$ iff at vertex $\langle s, [\nu]^* \rangle, \nu \models x \sim c$.
- Also label vertices with P_b if a vertex represents a boundary class.
- For a TCTL formula ϕ of the form

 $E\phi_1 U_{\sim c}\phi_2,$

we use the Fair CTL formula ϕ' of the form

 $E\phi_1 U p_c \wedge \phi_2 \wedge (p_b \vee \phi_1)$

- We assume that all TCTL subformulas ϕ_1 and ϕ_2 of TCTL formula ϕ have already been checked using this procedure. (i.e., the graph is already labelled with ϕ_1 and ϕ_2)
- For each vertex v, for each clock $y \in C^*$, label vertex v with

 $p_{y=0}$ if y = 0 in v $p_{y>c_y}$ if $y > c_y$ in v • Using Fair CTL, with clock set C^* , the fairness condition is

$$\bigwedge_{y \in C^*} \overset{\infty}{\mathrm{F}}(p_{y=0} \lor p_{y > c_y})$$

- We assume that the Fair CTL Model-Checker returns the set of vertices $S_{\phi'}$ that satisfy the given formula ϕ' , but does not label the graph with ϕ' .
- Remove those vertices from $S_{\phi'}$ where $x \neq 0$.
- For the vertices that remain in $S_{\phi'}$, label each vertex with ϕ .
- When labelling a vertex $\langle s, [\nu]^* \rangle$ with ϕ , where $[\nu]^*$ is a refinement of a clock region α , we also label $\langle s, [\nu']^* \rangle$ with ϕ , where $[\nu']^* (\neq [\nu]^*)$ is a refinement of the same clock region α .