
An Introduction to Maude
Joe Hendrix

An Introduction to Maude – p. 1/12



Talk Outline

Maude is many things:

Program Language
Can be used for representing sequential and concurrent
computation.

Meta Language
Maude can be used to write programs that extend
Maude and reason about Maude code. An extended
version of Maude called Full Maude is written in Maude
itself.

Logic
The core logic is called Membership Equational Logic
and it has an extension for concurrent systems called
Rewriting Logic.

An Introduction to Maude – p. 2/12



Sorts, Subsorts and Kinds

Maude is a typed language where the types are called
Sorts.

If one type is a refinement of another tyoe, it can be
declared as a subsort. e.g. Nat is a subsort of Int.

The transitive closure of the subsort declarations forms
a connected component called a kind. Type checking is
really done at the kind level, determining the sort of a
term requires a TM.

An Introduction to Maude – p. 3/12



Operators

Operators are the building blocks for terms.

They are used to define both data and functions.

An Introduction to Maude – p. 4/12



Equations

Equations define how operations transform.

Conceptually equations create equivalent classes and
substitute one equal term with another. Rules
(explained later) are used to transform terms in ways
that do not necessarily subsitute one term for an
equivalent one.

If the equations are all confluent and terminating, then
testing if two terms are equivalent can be done by
left-to-right rewriting via the rules into a cannonical form.

An Introduction to Maude – p. 5/12



Axioms

There are three axioms that can be added as attributes to
operator declarations.

Associativity

Commutativity

Identity (left, right, and both)

An Introduction to Maude – p. 6/12



Memberships

Memberships place terms into sorts. They are used
when simple operator declarations are not powerful
enough.

An Introduction to Maude – p. 7/12



Rules

Rules are used to model state transformations -
particularly concurrent and non-deterministic
computations.

Conceptually, rules are not the substitution of equals for
equals, but change of state over time.

There is an extension to Maude called Real-time Maude
that allows one to attach time to each rule
transformation.

There is another extension called Probablistic Maude
that allows rules to be chosen with probabilities instead
of non-deterministically.

An Introduction to Maude – p. 8/12



Meta Language

Maude can be used to reason about Maude code, and
hence it is a meta language.

For performance reasons, operations at the metalevel
can be performed by decent functions that perform
computations at the object level.

An Introduction to Maude – p. 9/12



Execution Strategy

The default execution strategy is to first evaluate the
arguments of a term fully, then look for equations that
apply to the term itself.

Equations are applied in the order they appear in the
module.

Equations can be tagged with the nonexec strategy so
they are not executed by the default strategy.

Equations can also have an operator-level evaluation
strategy defined so that some arguments are lazy or
arguments are evaluated in a specific order.

An Introduction to Maude – p. 10/12



Logic

Maude has a logic associated with the structure that is
used by Maude ITP to prove properties about programs.

An Introduction to Maude – p. 11/12



Model Checker

Maude has a builtin on-the-fly LTL Model Checker.

Can work on any Maude module provided the number
of reachable states from the initial state is reasonable.

Maude is competitive in performance with SPIN despite
having a much-more flexible syntax.

An Introduction to Maude – p. 12/12


	Talk Outline
	Sorts, Subsorts and Kinds
	Operators
	Equations
	Axioms
	Memberships
	Rules
	Meta Language
	Execution Strategy
	Logic
	Model Checker

