
Concurrent Maintenance of Rings

Xiaozhou Li Jayadev Misra C. Greg Plaxton

March 6, 2004

Concurrent Maintenance of Rings – p.1



Structured Peer-to-Peer Networks
Nodes have neighbor variables

The neighbor variables collectively form a certain
topology: ring, hypercube, etc

Over time, nodes may join or leave, possibly
concurrently

The neighbor variables should be properly
updated to maintain the topology

Problem: Design, and prove the correctness of,
protocols that maintain the topology

Focus of this paper: Ring topology

Concurrent Maintenance of Rings – p.2



Maintenance of Rings

Joins for a unidirectional ring

Joins for a bidirectional ring

Leaves for a bidirectional ring

Joins and leaves for a bidirectional ring

Joins and leaves for multiple rings

Concurrent Maintenance of Rings – p.3



Preliminaries

ring(x) = 〈∀u, v : u.x 6= nil ∧ v.x 6= nil : u
x

↪→

v〉, where u
x

↪→ v = 〈∃i : i > 0 : u.xi = v〉

Lemma In a ring, distinct processes have distinct
neighbors.

Lemma

add remove

v
v

u w wu
after

before

Concurrent Maintenance of Rings – p.4



Joins for a Unidirectional Ring

w

w

u

u

u

wv

v

v

v u w

in join

grant(w)
in

in

jng

change of topology exchange of messages

Concurrent Maintenance of Rings – p.5



The Protocol
process p
var s : {in, out , jng}; {state}

r : V ′; {right neighbor}
a : V ′ {auxiliary variable}

init s = out ∧ r = nil
begin
� s = out → {T1}

a := contact();
if a = p → r, s := p, in
� a 6= p → s := jng ; send join() to a fi

� rcv join() from q → {T2}
if s = in → send grant(r) to q; r := q
� s 6= in → send retry() to q fi

� rcv grant(a) from q → {T3}
r, s := a, in

� rcv retry() from q → {T4}
s := out

end
Concurrent Maintenance of Rings – p.6



An Invariant
ring(r)?

Define u.r′ as:

u.r′ =







x if m−(grant , u) = 1 ∧

m−(grant(x), u) = 1

u.r otherwise.

m−(msg , u): number of incoming messages of
type msg of u

ring(r′)?

Concurrent Maintenance of Rings – p.7



The Invariant
I = A ∧ B ∧ C ∧ ring(r′)

A = 〈∀u :: (u.s = jng ≡ f(u) = 1) ∧ f(u) ≤ 1〉

B = 〈∀u :: u.s = in ≡ u.r 6= nil〉

C = #grant(nil) = 0

f(u) = m+(join, u) + m−(grant , u) +
m−(retry , u)

#grant(nil): number of grant messages with
parameter nil in all channels

Concurrent Maintenance of Rings – p.8



Theorems and Proofs
Theorem I is an invariant.

Proof: Check that every conjunct is preserved by
every action

Theorem If joins eventually subside, then
ring(r) eventually holds, and once joins subside,
ring(r) is stable.

Concurrent Maintenance of Rings – p.9



Excerpt of a Proof

{ring(r′)} T2 {ring(r′)}: (s = in)

↑ p.r = w ∧ p.s = in ∧ m(join , q, p) > 0
⇒ {A; B; def. of r′}

↑ p.r′ = w ∧ m−(grant , p) = 0 ∧
q.r′ = nil ∧ m−(grant , q) = 0

⇒ {action; p 6= q because p.r′ 6= q.r′; def. of r′}
↓ p.r′ = q ∧ q.r′ = w

Concurrent Maintenance of Rings – p.10



Joins for a Bidirectional Ring

u

wv

u

wv

u

wv

u

wv

v u w

busy

in
jng

in

in
done

join

grant(u)

ack(v)

change of topology exchange of messages

Concurrent Maintenance of Rings – p.11



The Join Protocol
process p
var s : {in, out , jng , busy}; {state}

r, l : V ′; {neighbors}
t, a : V ′ {auxiliary variables}

init s = out ∧ r = nil ∧ l = nil ∧ t = nil
begin

� s = out → {T1}
a := contact();
if a = p → r, l, s := p, p, in
� a 6= p → s := jng ; send join() to a fi

� rcv join() from q → {T2}
if s = in → send grant(q) to r; r, s, t := q, busy , r
� s 6= in → send retry() to q fi

� rcv grant(a) from q → {T3}
send ack(l) to a; l := a

� rcv ack(a) from q → {T4}
r, l, s := q, a, in; send done() to l

� rcv done() from q → {T5}
s, t := in,nil

� rcv retry() from q → {T6}
s := out

end
Concurrent Maintenance of Rings – p.12



Leaves for a Bidirectional Ring

wv

u

wv
u

wv

u

v u w

busy

in

in
done

leave(w)

lvg

grant(u)

ack(nil)

change of topology exchange of messages

wv

u

out

Concurrent Maintenance of Rings – p.13



The Leave Protocol
process p
var s : {in, out , lvg , busy}; {state}

r, l : V ′; {neighbors}
t, a : V ′ {auxiliary variables}

init s = out ∧ r = nil ∧ l = nil ∧ t = nil
begin

� s = in → {T1}
if l = p → r, l, s := nil,nil, out
� l 6= p → s := lvg ; send leave(r) to l fi

� rcv leave(a) from q → {T2}
if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r
� s 6= in ∨ r 6= q → send retry() to q fi

� rcv grant(a) from q → {T3}
send ack(nil) to a; l := q

� rcv ack(a) from q → {T4}
send done() to l; r, l, s := nil,nil, out

� rcv done() from q → {T5}
s, t := in,nil

� rcv retry() from q → {T6}
s := in

end

Concurrent Maintenance of Rings – p.14



The Combined Protocol
process p
var s : {in, out , jng , lvg, busy}; {state}

r, l : V ′; {neighbors}
t, a : V ′ {auxiliary variables}

init s = out ∧ r = nil ∧ l = nil ∧ t = nil
begin

�

s = out → {T
j
1

} a := contact();
if a = p → r, l, s := p, p, in�

a 6= p → s := jng ; send join() to a fi

�

s = in → {T l
1

}
if l = p → r, l, s := nil,nil, out�

l 6= p → s := lvg; send leave(r) to l fi

�

rcv join() from q → {T
j
2

}
if s = in → send grant(q) to r; r, s, t := q, busy, r�

s 6= in → send retry() to q fi

�

rcv leave(a) from q → {T l
2

}
if s = in ∧ r = q → send grant(q) to a; r, s, t := a, busy , r�

s 6= in ∨ r 6= q → send retry() to q fi�

rcv grant(a) from q → {T3}
if l = q → send ack(l) to a; l := a�

l 6= q → send ack(nil) to a; l := q fi�

rcv ack(a) from q → {T4}
if s = jng → r, l, s := q, a, in; send done() to l�

s = lvg → send done() to l; r, l, s := nil,nil, out fi�

rcv done() from q → {T5} s, t := in,nil�

rcv retry() from q → {T6}
if s = jng → s := out

�

s = lvg → s := in fi
end Concurrent Maintenance of Rings – p.15



Theorems and Proofs
Theorems: Similar to those established for the
unidirectional join protocol

Proofs: Define (more involved) r′, l′, and
invariant I and check that every conjunct of I is
preserved by every action

Concurrent Maintenance of Rings – p.16



Next Step: Machine-Checked Proofs

Concurrent Maintenance of Rings – p.17


	Structured Peer-to-Peer Networks
	Maintenance of Rings
	Preliminaries
	Joins for a Unidirectional Ring
	The Protocol
	An Invariant
	The Invariant
	Theorems and Proofs
	Excerpt of a Proof
	Joins for a Bidirectional Ring
	The Join Protocol
	Leaves for a Bidirectional Ring
	The Leave Protocol
	The Combined Protocol
	Theorems and Proofs
	Next Step: Machine-Checked Proofs

