
Abstract Interpretation
a first introduction

Hanbing Liu

hbl@cs.utexas.edu

University of Texas at Austin

ACL2 Meeting, April 27, 2005 – p. 1

Abstract Interpretation

Programs denote computations in some universe of objects.

ACL2 Meeting, April 27, 2005 – p. 2

Abstract Interpretation

Programs denote computations in some universe of objects.

A same program can be interpreted differently with respect
to different universes of objects.

ACL2 Meeting, April 27, 2005 – p. 2

Abstract Interpretation

Programs denote computations in some universe of objects.

A same program can be interpreted differently with respect
to different universes of objects.

For example: −1515 ∗ 17 may denote a computation on the
abstract universe of {(+), (−), (+/−)}:

−1515 ∗ 17 ⇒ −(+) ∗ (+) ⇒ (−) ∗ (+) ⇒ (−)

−1515 + 17 ⇒ −(+) + (+) ⇒ (−) + (+) ⇒ (+/−)

ACL2 Meeting, April 27, 2005 – p. 2

Abstract Interpretation

Programs denote computations in some universe of objects.

A same program can be interpreted differently with respect
to different universes of objects.

For example: −1515 ∗ 17 may denote a computation on the
abstract universe of {(+), (−), (+/−)}:

−1515 ∗ 17 ⇒ −(+) ∗ (+) ⇒ (−) ∗ (+) ⇒ (−)

−1515 + 17 ⇒ −(+) + (+) ⇒ (−) + (+) ⇒ (+/−)

One wants to study some aspects of the concrete (but often
more complicated) executions by studying corresponding
properties of abstract (thus simpler) executions.

ACL2 Meeting, April 27, 2005 – p. 2

Abstract Interpretation

An abstract interpretation is defined as a non-standard
(approximated) program semantics obtained from the
standard (or concrete) one by replacing the actual (concrete)
domain of computation and its basic (concrete) semantic
operations with, respectively, an abstract domain and
corresponding abstract semantic operations.
http://www.doc.ic.ac.uk/~herbert/epsrc/node2.html

ACL2 Meeting, April 27, 2005 – p. 3

http://www.doc.ic.ac.uk/~herbert/epsrc/node2.html

Abstract Interpretation

The abstract interpretation research studies:

when two interpretations are related — when and what
kind of properties derived in one interpretation can be
accepted as properties of another interpretation.

how to construct an abstract interpretation of a
program, that is both

“simple” — finite (?)
“useful” — sufficiently accurate (?)

ACL2 Meeting, April 27, 2005 – p. 4

Background

Motivation
It relates to my work of verifying the bytecode verifier
It provides a unified way for looking at various
problems: code optimization, modeling checking,
Formulating the abstract interpretation concept
rigorously is interesting

Objective of this short talk
Concepts of a.i., c.i., safe simulation
Conditions for ensuring safe simulation
Tricks for getting “finite” a.i.

Plan

ACL2 Meeting, April 27, 2005 – p. 5

Traces as “generic” program semantics

Standard (concrete) semantics: concrete execution
traces, where traces are sequences of states.

For example, meaning of a Java bytecode program

We will see a concrete trace example for a flowchart
program later.

ACL2 Meeting, April 27, 2005 – p. 6

Traces as “generic” program semantics

Standard (concrete) semantics: concrete execution
traces, where traces are sequences of states.

For example, meaning of a Java bytecode program

We will see a concrete trace example for a flowchart
program later.

Abstract semantics: traces are (possibly) trees of
transitions that connect abstract states.

For example, abstract semantics of Java bytecode
programs.

ACL2 Meeting, April 27, 2005 – p. 6

Flowchart program example

Flowchart program syntax:
 <START>

X:= X div 2

<END>evenp X

yes

 no

PP= 0

PP=1

PP= 2

PP=3

Programs are constructed from a set of nodes;

nodes have predecessors and successors; type

of nodes: test nodes, junction nodes, assign-

ment nodes; nodes mention identifiers and ex-

pressions

ACL2 Meeting, April 27, 2005 – p. 7

Flowchart program example

Flowchart program syntax:
 <START>

X:= X div 2

<END>evenp X

yes

 no

PP= 0

PP=1

PP= 2

PP=3

Programs are constructed from a set of nodes;

nodes have predecessors and successors; type

of nodes: test nodes, junction nodes, assign-

ment nodes; nodes mention identifiers and ex-

pressions

Universe of objects: numbers; mappings from identifiers
to numbers; program points

ACL2 Meeting, April 27, 2005 – p. 7

Flowchart program example

Flowchart program syntax:
 <START>

X:= X div 2

<END>evenp X

yes

 no

PP= 0

PP=1

PP= 2

PP=3

Programs are constructed from a set of nodes;

nodes have predecessors and successors; type

of nodes: test nodes, junction nodes, assign-

ment nodes; nodes mention identifiers and ex-

pressions

Universe of objects: numbers; mappings from identifiers
to numbers; program points

For rigorous descriptions, see Cousots’ paper: Abstract Interpretation: A Unified Lattice

Model for Static Analysis of Program by Construction or Approximation of Fixpoints

ACL2 Meeting, April 27, 2005 – p. 7

Flowchart program example

Concrete interpretation as a sequence of states:
 <START>

X:= X div 2

<END>evenp X

yes

 no

PP= 0

PP=1

PP= 2

PP=3

Suppose for a concrete execution starting from x
== 12:

12@pp=1→12@pp=2→6@pp=1→6@pp=2→3@pp=1

→3@pp=3

ACL2 Meeting, April 27, 2005 – p. 8

Flowchart program example

Concrete interpretation as a sequence of states:
 <START>

X:= X div 2

<END>evenp X

yes

 no

PP= 0

PP=1

PP= 2

PP=3

Suppose for a concrete execution starting from x
== 12:

12@pp=1→12@pp=2→6@pp=1→6@pp=2→3@pp=1

→3@pp=3

Abstract interpretation as a tree of abstract states

e@pp=1

e@pp=2

e@pp=1

e@pp=2

 o@pp=3

o@pp=1

On universe of {e,o}, div operation is interpreted
to produce both e, o.

Execution from x == e is an infinite tree

ACL2 Meeting, April 27, 2005 – p. 8

Safe simulation

A value c being safely approximated/represented by a:

c Safeval a

where binary relation Safeval ⊆ V al × AbsV al

Similarly, a Safestate relation between concrete states
and abstract states

c ` pp Safestate a ` pp iff c Safeval a

Safetrace definition:
tc Safetrace ta iff root(tc) Safestate root(ta) and for every
transition, root(tc) → tci

, there exists a transition,
root(ta) → taj

, and tci
Safetrace taj

ACL2 Meeting, April 27, 2005 – p. 9

“Fundamental theorems”

The subset relation between reachable states
collc(pp) ⊆ γ(colla(pp))

where collt(pp) = { v | v ` pp is a state in trace t }; and where
γ(S) = { c | ∃a ∈ S such that c Safeval a}, S ⊆ AbsV al

More generally, for certain logic L (e.g. box-mu-calculus),
interpretable on tc and ta, one may prove

tc Safetrace ta implies for all formula φ ∈ L,
ta |= φ ⇒ tc |= φ.

ACL2 Meeting, April 27, 2005 – p. 10

Safe simulation: another formulation

An alternative formulation:

There exists a β : V al → AbsV al:
For all program points, pp, and c ∈ V al,
c ` pp →c c′ ` pp′ implies there exists a′ ∈ AbsV al
such that β(c) ` pp →a a′ ` pp′ and β(c′) v a′

We also require that transition relation in the abstract
interpretation is monotonic with respect to the
approximation ordering, v:

a ` pp →a a′ ` pp′ and a v b implies
b ` pp →a b′ ` pp′ and a′ v b′

We define Safeval as:

c Safeval a if β(c) = a, or ∃a′ ∈ AbsV al, a′ v a and
β(c) = a′

ACL2 Meeting, April 27, 2005 – p. 11

Construct “finite” a.i.

One wants a.i. to be finite (a trace can be infinite but needs
to be a regular tree), so that it can be explored effectively.
Common technique is to approximate with “memorization”:

If a node is v ` pp, it is generalized to v t v′ ` pp,
where v′ = { v | v ` pp appears earlier in the trace }

For this to produce a regular tree that finitely represents a.i.,
we need AbsV al be partially ordered and has finite-chain
property.

ACL2 Meeting, April 27, 2005 – p. 12

Summary

One is motivated to show abstract interpretation of a
program being a safe simulation because:

“Fundamental theorems” about safe simulation

Abstract interpretation is simpler

To establish a safe simulation, one approach is to:

Define β that maps concrete state into abstract state

Show that transition relations on the abstract domain is
“monotonic”

Show that for any possible concrete transition, there is a
corresponding transition on the abstract domain

ACL2 Meeting, April 27, 2005 – p. 13

Java bytecode verification

ACL2 Meeting, April 27, 2005 – p. 14

Java bytecode verification

One of my goal is to relate properties asserted on abstract
executions to properties of concrete executions.
In particular, I need to show

collc(pp) ⊆ γ(colla(pp))
That is the set of reachable states collc(pp) is subset of
the set of states which correspond to reachable abstract
states colla(pp)

Furthermore, I need to show that the bytecode verifier
checking on the abstract states implies the runtime
checking on any of the corresponding concrete state

That is if the abstract execution does not enter an error
state, concrete executions from those corresponding
abstract state will not enter an error state.

ACL2 Meeting, April 27, 2005 – p. 14

BCV asa.i.

Roughly:

β: frame-sig

v on AbsV al:
sig-frame-more-general

Monotonicity:
(bcv::check-* gframe) ⇒ (bcv::check-* sframe)
(bcv::execute-* sframe) v (bcv::execute-* gframe)

c ` pp →c c′ ` pp′ implies there exists a′ ∈ AbsV al
such that β(c) ` pp →a a′ ` pp′ and β(c′) v a′

(bcv::check-* (frame-sig s)) ⇒ (djvm::check-* s)
(frame-sig (djvm::execute-* s))
v (bcv::execute-* (frame-sig s))

ACL2 Meeting, April 27, 2005 – p. 15

Frame-sig

Built upon value-sig:
(defun value-sig (v cl hp hp-init curMethodPtr)

(if (REFp v hp)

(if (NULLp v)

’null

(let ((obj-init-tag (deref2-init v hp-init))

(obj (deref2 v hp)))

(if (not (consp obj-init-tag))

(fix-sig (obj-type obj))

(if (equal (cdr obj-init-tag) curMethodPtr)

;; if the object is created in this method

;; then translate into an uninitialized(Offset)

(cons ’uninitialized (car obj-init-tag))

’uninitializedThis))))

(tag-of v)))

ACL2 Meeting, April 27, 2005 – p. 16

AALOAD

BCV and DJVM’s check-AALOAD

(defun check-aaload (inst env curFrame)

(declare (ignore inst))

(mylet* ((ArrayType (nth1OperandStackIs 2 curFrame))

(ElementType (ArrayElementType ArrayType)))

(validtypetransition env

’(int (array (class "java.lang.Object")))

ElementType

curFrame)))

(defun AALOAD-guard (inst s)

(mylet* ((index (safe-topStack s))

(array-ref (safe-secondStack s)))

(and (consistent-state s)

(topStack-guard-strong s)

(<= (len (operand-stack (current-frame s))) (max-stack s))

(or (CHECK-NULL array-ref)

(and (CHECK-ARRAY-guard (rREF array-ref) (heap s))

(not (primitive-type? (array-component-type (obj-type

ACL2 Meeting, April 27, 2005 – p. 17

Lemma

Show AALOAD.lisp

ACL2 Meeting, April 27, 2005 – p. 18

	Abstract Interpretation
	Abstract Interpretation
	Abstract Interpretation
	Abstract Interpretation

	Abstract Interpretation
	Abstract Interpretation
	Background
	Traces as ``generic'' program semantics
	Traces as ``generic'' program semantics

	Flowchart program example
	Flowchart program example
	Flowchart program example

	Flowchart program example
	Flowchart program example

	Safe simulation
	``Fundamental theorems''
	Safe simulation: another formulation
	Construct ``finite'' a.i.
	Summary
	Java bytecode verification
	Java bytecode verification

	BCV as {em a.i.}
	Frame-sig
	AALOAD
	Lemma

