
Automated Reasoning in
LabVIEW

An Introduction to the Method/ACL2 System

Grant Olney Passmore + ACL2 Seminar

Method/ACL2 work is a group effort together with Jacob Kornerup and Jeff Kodosky.

LabVIEW

• Graphical, concurrent, data-flow programming language.

• Pioneered notion of “Virtual Instruments” as software
renditions of solutions whose realization was classically in
specialized, tediously developed, and expensively
manufactured hardware.

• Extremely popular in mission critical testing and
automation.

• Can now target any 32-bit microprocessor, and is
increasingly popular as a development environment for
embedded systems.

LabVIEW: Syntax

• Development of a VI consists of designing, in
tandem, a !ont panel (user interface) and block
diagram (algorithm) for the function of focus.

3

LabVIEW: Semantics
• Data-flow determines order of execution.

• Block Diagrams (algorithms) consist of functions, which are
represented as icons, wires that connect these icons, and
structures that control execution logic.

• Data flows from one function to the next. So, in a restricted
subset of the language, LabVIEW is purely applicative - it is
all just functional composition!

• Each function on a diagram does not execute until all of its
input terminals have data available for processing.

• Thus, data-flow is rooted in 0-ary functions (constants and
user input boxes), and a data-flow partial order may be
discerned recursively with 0-ary functions as a base

• Note to self: This is a good time to show an example!

LabVIEW + A.R.
• Due to its placement as a key development environment for

mission critical and embedded systems, LabVIEW is an especially
ripe candidate for which a strong application of formal methods
and automated reasoning may be very fruitful.

• Began working on this problem in June, 2005. Starting initially
with Otter, I proceeded by axiomatizing G diagrams by hand in a
Hilbert-style fashion, and producing proofs of simple structural
theorems as a first proof of concept.

• Shifted focus to ACL2 to take advantage of its potent brew of
decision procedures, operational semantics, and induction
heuristics, with the intent of mechanically translating G diagrams
into extensionally equivalent, fu$y executable, Applicative Common
Lisp forms.

• Two possibilities: Compilation VS. Interpretation. Compilation
more natural for proving theorems about diagrams (machine model
need not be mapped!).

Method of Attack:
Theorem Blocks

• Decided to introduce a new meta-linguistic node block into LabVIEW language, the
Theorem Block.

• Theorem blocks are sub-diagrams with any number of input terminals and no output
terminals, except a single terminal which may connect only to other theorem blocks
(proof planning).

• Input terminals connect to wires on the object diagram. The theorem block then houses
asserted constraints upon the relationships between the values of these wires.

• Thus, proposed theorems may be asserted upon the diagram in the same language as the
object diagram itself, giving assertions an executable counterpart within LabVIEW, and
allowing the same debugging and visualization tools to be used for tracing the flow of
data through assertions interactively!

• If theorem can not be proven at compile time, theorem block is compiled into
executable as a run-time assertion.

• In this way, Theorem Blocks may be both object and meta theoretic constructs.

G Compiler & Method/ACL2
• In order to prove the contents of theorem blocks in ACL2, we need

both a method for translating the high-level G data-structure into a
manipulatable acyclic graph, as well as a method for translating an
acyclic graph representing a G diagram into a form acceptable to
ACL2.

• Translating G diagram into a manipulatable graph is handled by the
new G compiler, written in G!

• G compiler gives us a massive, human unreadable representation of a
G diagram as a set of nodes together with their terminal wirings. We
call this IGML.

• Nothing else given in G Compiler output. Data-flow ordering, node
rankings, and all node connectivity must be discovered by a new tool:
Method/ACL2.

Method/ACL2
• A [Theorem Block Annotated G] diagram => ACL2 compiler.

• Written itself in ACL2! (Very elegant possibilities here).

• Provides the means to convert G diagrams into an extensionally equivalent ACL2 form,
then translate assertions specified on Theorem Blocks upon such diagrams into ACL2
proof searches and theorem definitions (the latter if the former is found, or SKIP-
PROOF is used).

• Provides induction heuristics for translating theorem block assertions made upon shift
registers into ACL2 proof searches.

• Will allow rewriting strategies, lemma usage, and hints to be specified on G Theorem
Blocks as attributes wired to the Proof Data sub-node, and uses such data when
guiding ACL2 towards a proof.

• Also uses data-flow ordering of wires connecting different Theorem Blocks as an
ordering upon theorem definitions, allowing theorems to be proved in a desired
sequence.

Strategy I
Lambdas & Combinatorial Explosions

• Once I had sufficient machinery in place for computing data-
flow and connectivity, the prospect of extracting executable,
extensionally equivalent ACL2 forms seemed very elegant.

• My first approach was to then begin at the node(s) with
highest ranking, introduce a lambda term to apply them to
their inputs, and recur in this fashion, having ACL2 perform
Beta-reduction on the final form to extract an executable
ACL2 form.

• The only function symbol I would introduce was that of the
entire diagram - combinatorial explosion for branching wires!

Strategy II
Every Node is a Function

• Matt Kaufmann suggested I introduce a new 0-ary function for every
node, with their executable counterparts disabled to force simplification.

• Using (local (encapsulate foo)) [via defstub] forms to introduce
constrained functions for input nodes.

• Allows theorems to introduce rewrite rules in a strategic way, by always
targeting function symbols as atomic units susceptible to rewrite.

• No more combinatorial explosion - nothing is in-lined (no more explicit
lambdas to be Beta reduced or high-level lambda for the entire diagram!).

• Caveat: We now forgo executable counterparts for non-primitives, but
these may be retained using ACL2-PC::S.

ForLoops
Shift Registers and Induction

• ForLoop Structures provide the first focus for
inductive theorem proving in Method/ACL2.

• Termination is guaranteed, thus we may focus on
developing induction heuristics which focus only on
partial correctness (as the difference between partial
and total correctness then collapse).

• Shift Registers are the only inductive structure in
the language, are available in all looping structures,
and thus developing powerful induction heuristics
for Shift Registers is my current focus.

Status

• Nearly all applicative aspects of the language
implemented.

• Hard problems that are partially solved: Loops
with Shift Registers, via our induction heuristics.

• Hard problems yet to be focused upon: Heuristics
for proving termination of WhileLoop Structures,
methods for handling temporal properties in
parallel diagrams.

Part II:
Automating Interpretability

• Interpretability, conservativity, ordinal analyses, and
combinatorial independencies of theories are all
extremely fascinating proof-theoretic results.

• Parsons’ Theorem - PI_2 conservativity of I-
Sigma_1 over PRA is a deep and beautiful theorem.

• Reverse Mathematics program of Friedman and
Simpson has a similar approach: Performing
“reversals” of countable, non-set-theoretic mathematics
to find to which set existence axioms interesting
theorems are equivalent.

Holy Grail:
Gentzen’s Hauptsatz

• Cut Elimination is at the heart of most of these results in structural
proof theory.

• ACL2 has transfinite induction up to epsilon_0, making it a possible
environment for formalizing Gentzen’s sequent calculus and his Mid-
Sequent Theorem.

• Long-term goal: An environment for automating the discovery of
relative strengths of combined theorem proving environments,
together with a method for translating proof objects of eligible
statements between different theorem proving systems.

• Possible future: Interpretability logic?

• Exciting possibilities! A beautiful problem well deserving of a serious
effort.

