
Inductive Assertions in ACL2: Motivation and
Ingredients

Sandip Ray

Department of Computer Sciences
University of Texas at Austin
sandip@cs.utexas.edu

http://www.cs.utexas.edu/users/sandip

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

Broad Goal

Facilitate the use of theorem proving to prove correctness of sequential
programs running on machines modeled operationally in the logic.

Operational semantics:� (step s) returns the state after executing one instruction from s.� (run s n) returns the state after execution of n instructions.

(defun run (s n)
(if (zp n)

s
(run (step s) (- n 1))))

UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES

Verification of Sequential Programs

Partial Correctness:

If the program is initiated from a machine state satisfying a given
precondition, then if the program reaches a halting state, it
satisfies the desired postcondition.

(defun halting (s) (equal s (step s)))

(defthm partial-correctness
(implies (and (pre s)

(halting (run s n)))
(post (run s n))))

UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES

Verification of Sequential Programs

Total Correctness:

If the program is initiated from a machine state satisfying a given
precondition, then the program reaches a halting state, and it
satisfies the desired postcondition.

(defun-sk exists-halting-state
(exists n (halting (run s n))))

(defthm termination
(implies (pre s)

(exists-halting-state s)))

Total correctness is partial correctness together with termination.

UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES

Total Correctness

Total Correctness: Alternative Formulation

(defthm total-correctness
(implies (pre s)

(and (halting (run s (clock s)))
(post (run s (clock s))))))

This leads to the so-called “clock function proofs” in the Boyer-Moore
community.

UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES

Halting Points vs. Exitpoints

Correctness:

If the program is initiated from a machine state satisfying a given
precondition, then if the program reaches a halting state, it
satisfies the desired postcondition.

More commonly, we talk about exit states, the predicate exit
characterizes the exitpoints of subroutines or other program blocks.

In that case, we want to assert the postcondition on the first reachable
exit state from a pre state.

UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

Partial Correctness Using Exitpoints

(defthm partial-correctness
(implies (and (pre s)

(natp n)
(exit (run s n)))

(and (exit (run s (clock s)))
(post (run s (clock s)))
(natp (clock s))
(<= (clock s) n))))

Thus clock takes us to the first exit state (if one is reachable), and the
postcondition holds there.

UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES

Proving Partial Correctness: Traditional ACL2 Way

Define inv such that:

(defthm pre-implies-inv
(implies (pre s) (inv s)))

(defthm inv-is-inductive
(implies (and (inv s) (not (exit s)))

(inv (step s))))

(defthm inv-is-sufficient
(implies (and (inv s) (exit s))

(post s)))

Predicate inv is often called an inductive invariant .

UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES

Proving Termination: Traditional ACL2 Way

Define a function rank such that:

(defthm rank-is-ordinal
;; Can assume (inv s) here but is usually not necessary

(o-p (rank s)))

(defthm rank-decreases
(implies (and (inv s)

(not (exit s)))
(o< (rank (step s))

(rank s))))

Function rank is often called the ranking function .
Another (more common) approach is simply to define a clock.

UNIVERSITY OF TEXAS AT AUSTIN 8

DEPARTMENT OF COMPUTER SCIENCES

What is complicated about these proofs?

A simple program:

1: X:=0 fTg

2: Y:=10
3: if (Y � 0) goto 7
4: X:=X+1
5: Y:=Y-1
6: goto 3
7: HALT f(X=10)g

UNIVERSITY OF TEXAS AT AUSTIN 9

DEPARTMENT OF COMPUTER SCIENCES

What is complicated about these proofs?

Correctness proof using Step Invariants

1: X:=0 fTg

2: Y:=10
3: if (Y � 0) goto 7
4: X:=X+1
5: Y:=Y-1
6: goto 3
7: HALT f(X=10)g

The predicate inv needs to characterize every reachable state.

UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES

What is complicated about these proofs?

Partial correctness proof using Step Invariants

1: X:=0 fTg

2: Y:=10 f(X=0)g

3: if (Y � 0) goto 7 f(X+Y=10)g
4: X:=X+1 f(Y >0) ^ (X+Y=10)g
5: Y:=Y-1 f(Y >0) ^ (X+Y=11)g
6: goto 3 f(Y �0) ^ (X+Y=10)g
7: HALT f(X=10)g

The predicate inv needs to characterize every reachable state.

UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES

A Typical ACL2 Definition

(defun inv (s)
(case (pc s)
(0 ...)
(1 ...)
(2 ...)
....

(7 ...)))

Too tedious!! Also often complicated to figure out what we should write at every
program counter value.

The same is actually also true for the rank.

UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES

Towards more Automation: Assertional Reasoning

Annotate the program only at cutpoints.

1: X:=0 fTg

2: Y:=10
3: if (Y � 0) goto 7 f(X+Y=10)g
4: X:=X+1
5: Y:=Y-1
6: goto 3
7: HALT f(X=10)g

Cutpoints are loop tests and program entry and exit points.

UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES

Assertional Reasoning

Annotate the program only at cutpoints.
1: X:=0 fTg

2: Y:=10
3: if (Y � 0) goto 7 f(X+Y=10)g
4: X:=X+1
5: Y:=Y-1
6: goto 3
7: HALT f(X=10)g

A Verification Condition Generator (VCG) crawls over the annotated
program to generate certain formulas.fTg X:=0; Y:=10 f(X+Y)=10g
T) (0+10)=10

Uses (implicitly) a bunch of axioms: f�(b)g x:= b f�(x)g.
UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES

Assertional Reasoning

Annotate the program only at cutpoints.
1: X:=0 fTg

2: Y:=10
3: if (Y � 0) goto 7 f(X+Y=10)g
4: X:=X+1
5: Y:=Y-1
6: goto 3
7: HALT f(X=10)g

A verification condition generator crawls over the annotated program to
generate certain formulas.fTg X:=0; Y:=10 f(X+Y)=10g
T) (0+10)=10� The verification conditions can be proven by a theorem prover.

UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES

Goal of the Project

� We will attach assertions (and ranking functions) only at cutpoints.� We will prove partial (and total) correctness for operationally modeled
programs.� We will not implement or verify a VCG.

UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Key Observation

Moore (2003): Given assertions at cutpoints, we can generate an
inductive invariant.

(inv s)
=
(if (cutpoint s)

(assertion s)
(inv (step s)))

Notice that the “definition” of inv is recursive, but might not terminate.

No problem!! The definition is tail-recursive and hence admissible in
ACL2.

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES

Key Ingredient: defpun

We can use defpun to write any tail-recursive “definitions” in ACL2.

Manolios and Moore (2003): Any tail-recursive definition is admissible
(whether terminating or not).

Such definitions can even be executed, but we’ll not get into that.

UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES

Why are tail-recursive definitions ok?

Suppose you have arbitrary functions (test x), (base x), and
(recur x).

How do you define a function f such that the following is a theorem?

(equal (f x)
(if (test x)

(base x)
(f (recur x))))

UNIVERSITY OF TEXAS AT AUSTIN 19

DEPARTMENT OF COMPUTER SCIENCES

Why are tail-recursive definitions ok?

We can clearly define a “bounded version” of f:

(defun fn (x n)
(if (or (zp n) (test x))

(base x)
(fn (recur x) (1- n))))

The function fn recurs until n becomes 0 or test becomes true.

UNIVERSITY OF TEXAS AT AUSTIN 20

DEPARTMENT OF COMPUTER SCIENCES

Why are tail-recursive definitions ok?

We can clearly define a “bounded version” of f:

(defun fn (x n)
(if (or (zp n) (test x))

(base x)
(fn (recur x) (1- n))))

The function fn recurs until n becomes 0 or test becomes true.

We now want to choose a large enough n.

UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES

What is large enough?

We don’t know how large is necessary, but we can provide a large n
using quantification.

(defun recur-n (x n)
(if (zp n) x
(recur-n (recur x) (1- n))))

(defchoose choice (n) (x)
(test (recur-n x n)))

(defthm choice-is-large-enough
(implies (test (recur-n x n))

(test (recur-n x (choice x)))))

UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES

Defining f

(defun f (x)
(if (test (recur-n x (choice x)))

(fn x (choice x))
42 ;; or "J Moore" or any constant you like
))

The key theorem:

(defthm original-terminates-iff-recursive
(implies (not (test x))

(equal (test (recur-n (recur x)
(choice (recur x))))

(test (recur-n x (choice x))))))

Thus the original recursion terminates iff the recursive call does.

UNIVERSITY OF TEXAS AT AUSTIN 23

DEPARTMENT OF COMPUTER SCIENCES

Defpun

(defpun f (x)
(if (test x)

(base x)
(f (recur x))))

Generates a function f which is constrained to satisfy the following axiom:

(equal (f x)
(if (test x)

(base x)
(f (recur x))))

This is done by following the recipe of defining f above.

UNIVERSITY OF TEXAS AT AUSTIN 24

DEPARTMENT OF COMPUTER SCIENCES

Moore’s Invariant

(defpun inv (s)
(if (cutpoint s)

(assertion s)
(inv (step s))))

Now what happens if you try to prove that it is an inductive invariant?

Recall that the theorem we want to prove is:

(defthm inv-is-inductive
(implies (and (inv s) (not (exit s)))

(inv (step s))))

UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES

Using Moore’s Method

1: X:=0 fTg

2: Y:=10
3: if (Y � 0) goto 7 f(X+Y=10)g
4: X:=X+1
5: Y:=Y-1
6: goto 3
7: HALT f(X=10)g

(implies T (equal (+ 0 10) 10))

Exactly the condition we expected to get from a VCG.

But we did not implement a VCG!!

UNIVERSITY OF TEXAS AT AUSTIN 26

DEPARTMENT OF COMPUTER SCIENCES

Total Correctness

Unfortunately, Moore’s method cannot be directly applied to get total
correctness.

Recall that we need to prove:

(defthm rank-decreases
(implies (and (inv s)

(not (exit s)))
(o< (rank (step s))

(rank s))))

But we do not want to attach ranking functions with every state!

Even if we did, Moore’s invariant will likely not help us prove the above
theorem.

UNIVERSITY OF TEXAS AT AUSTIN 27

DEPARTMENT OF COMPUTER SCIENCES

Characterizing Cutpoints directly

(defpun cutsteps-tail (s i)
(if (cutpoint s) i
(cutsteps-tail (step s) (+ i 1))))

(defun-sk exists-default ()
(exists s (not (cutpoint s))))

(defun default () (exists-default-witness))

(defun next-cutpoint (s)
(if (cutpoint (run s (cutsteps-tail s 0)))

(run s (cutsteps-tail s 0))
(default)))

UNIVERSITY OF TEXAS AT AUSTIN 28

DEPARTMENT OF COMPUTER SCIENCES

Characterizing Correctness Conditions

(implies (pre s) (and (cutpoint s) (assertion s)))
(implies (and (exitpoint s) (assertion s)) (post s))
(implies (exitpoint s) (cutpoint s))

(implies (and (cutpoint s)
(assertion s)
(not (exitpoint s)))

;; Actually you can also assume that
;; an exitpoint is reachable from s, but we
;; ignore that now.

(assertion (next-cutpoint (step s))))

These four conditions imply partial correctness. The last one is the hard
constraint.

UNIVERSITY OF TEXAS AT AUSTIN 29

DEPARTMENT OF COMPUTER SCIENCES

Partial Correctness: Restated

(defpun exitsteps-tail (s i)
(if (exitpoint s) i
(exitsteps-tail (step s) (1+ i))))

(defun exitsteps (s)
(let ((steps (exitsteps s 0)))
(if (exitpoint (run s steps)) steps (omega))))

(defthm partial-correctness
(implies (and (pre s)

(exitpoint (run s n)))
(let ((steps (exitsteps s)))
(and (exitpoint (run s steps))

(post (run s steps))))))

UNIVERSITY OF TEXAS AT AUSTIN 30

DEPARTMENT OF COMPUTER SCIENCES

Total Correctness: Constraints

(implies (pre s) (and (cutpoint s) (assertion s)))
(implies (and (exitpoint s) (assertion s)) (post s))
(implies (exitpoint s) (cutpoint s))
(o-p (rank s))

(implies (and (cutpoint s) (assertion s)
(not (exitpoint s)))

(let ((ns (next-cutpoint (step s))))
(and (cutpoint ns)

(assertion ns)
(o< (rank ns) (rank s)))))

Notice that ranking functions are required to be specified only at
cutpoints.

UNIVERSITY OF TEXAS AT AUSTIN 31

DEPARTMENT OF COMPUTER SCIENCES

Total Correctness: Statement

(defthm total-correctness
(implies (pre s)

(let ((ns (run s (exitsteps s))))
(and (exitpoint ns)

(post ns)))))

Partial (and total) correctness can be proven easily given
(corresponding) encapsulated functions pre, post, cutpoint,
assertion, (and rank).

UNIVERSITY OF TEXAS AT AUSTIN 32

DEPARTMENT OF COMPUTER SCIENCES

So What?

I have proven the generic (partial and total) correctness theorems, from
encapsulated constraints.

But so what? We want to actually use it for proving correctness of real
programs.

How do we do that?

UNIVERSITY OF TEXAS AT AUSTIN 33

DEPARTMENT OF COMPUTER SCIENCES

Concretizing Generic Proofs

Three key ingredients:� Functional instantiation� Symbolic Simulation� Macros

UNIVERSITY OF TEXAS AT AUSTIN 34

DEPARTMENT OF COMPUTER SCIENCES

Functional Instantiation

Suppose you are now given “concrete” functions prec, postc, etc., and
you want to prove the concrete (partial or total) correctness theorem.

(defthm concrete-total-correctness
(implies (prec s0)

(and (exitpointc (run s0 (exitstepsc s0)))
(postc (run s0 (exitstepsc s0)))))

:hints (("Goal" :instance
(:functional-instance

total-correctness
(pre prec)
(post postc)
....)

(s s0))))

UNIVERSITY OF TEXAS AT AUSTIN 35

DEPARTMENT OF COMPUTER SCIENCES

Functional Instantiation

Functional instantiation allows you to prove a concrete theorem by
instantiating an “abstract” theorem, as long as the concrete functions
satisfy the constraints of the abstract function.

Thus functional instantiation requires that you be able to prove first:

(implies (prec s) (and (cutpointc s) (assertionc s)))
(implies (exitpointc s) (cutpointc s))
....

UNIVERSITY OF TEXAS AT AUSTIN 36

DEPARTMENT OF COMPUTER SCIENCES

Functional Instantiation

But wait! What if the functions prec, postc, etc. take more than one
argument?

For example, we might say:� (pre k s): In state s, the memory location 1000 contains a 32-bit
integer k.� (post k s): In state s the memory location 1000 contains a 32-bit
integer whose value is (fix (fib k)).

At the least we want to allow the user to write such functions.

UNIVERSITY OF TEXAS AT AUSTIN 37

DEPARTMENT OF COMPUTER SCIENCES

Functional Instantiation

No problem. You can instantiate a unary abstract function with a
concrete function of any arity.

(defthm concrete-total-correctness
(implies (prec s0)

(and (exitpointc (runc s0 (exitstepsc s0)))
(postc (run s0 (exitstepsc s0)))))

:hints (("Goal" :instance
(:functional-instance

total-correctness
(pre (lambda (s) (prec n s)))
(post (lambda (s) (postc n s)))
....)

(s s0))))

UNIVERSITY OF TEXAS AT AUSTIN 38

DEPARTMENT OF COMPUTER SCIENCES

Symbolic Simulation

Functional instantiation requires that we prove the constraints on the
abstract functions for the concrete ones.

But there was one difficult constraint.

(implies (and (cutpointc s)
(assertionc s)
(not (exitpointc s)))

(assertion (next-cutpointc (stepc s))))

How will we prove that?

UNIVERSITY OF TEXAS AT AUSTIN 39

DEPARTMENT OF COMPUTER SCIENCES

Symbolic Simulation

We prove the following two theorems about next-cutpointc. (Again
by instantiating the corresponding generic theorems about
next-cutpoint).

(implies (cutpointc s) (equal (next-cutpointc s) s))

(implies (not (cutpointc s))
(equal (next-cutpointc s)

(next-cutpointc (stepc s))))

These rules allow us to symbolically simulate from cutpoint to cutpoint,
much like the way Moore’s method did.

UNIVERSITY OF TEXAS AT AUSTIN 40

DEPARTMENT OF COMPUTER SCIENCES

Macros: Putting them all together

I will show you a simple macro defsimulate, that does this functional
instantiation stuff, and thereby proves the concrete correctness
theorems.

UNIVERSITY OF TEXAS AT AUSTIN 41

DEPARTMENT OF COMPUTER SCIENCES

The TINY fib program

100 pushsi 1 *start*
102 dup
103 dup
104 pop 20 fib0 := 1;
106 pop 21 fib1 := 1;
108 sub n := max(n-1,0);
109 dup *loop*
110 jumpz 127 if n == 0, goto *done*;
112 pushs 20
113 dup
115 pushs 21
117 add
118 pop 20 fib0 := fib0 + fib1;
120 pop 21 fib1 := fib0 (old value);
122 pushsi 1

UNIVERSITY OF TEXAS AT AUSTIN 42

DEPARTMENT OF COMPUTER SCIENCES

124 sub n := max(n-1,0);
125 jump 109 goto *loop*;
127 pushs 20 *done*
129 add return fib0 + n;
130 halt *halt*

UNIVERSITY OF TEXAS AT AUSTIN 43

