
Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Specification and verification of a simple machine

Hanbing liu

March 8, 2006

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

One slide summary

I Modeled a simple virtual machine: an interpreter + a static
checker

I Proved that verified programs never overflow the operand
stack

I Identified a suitable “good-state” predicate
I Proved that the “good-state” predicate is an inductive

invariant of executing “verified” programs
I Proved that a “good-state”’s operand stack is not too big

The proof input is 11,360 lines in 47 files. The machine model (the
interpreter and the static checker) is just 913 lines.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Machine State

I State: call stack +
method table

I Call frame: pc +
operand-stack +
locals +
method-name

I Method:
method-name +
max-stack + code
+ nargs

Call−stack

<call frame 2>

<call frame 1>

......

......

......

opstack

locals

pc 1

....

m−name "B"

Method

name "A"

max−stack 3

Code

POP

PUSH

...

IFEQ 3

INVOKE "B"

RETURN

NARGS 2

<value>

<value>

......

......

......

 Operand−stack

Method−table

"A"

"B"

Call−frame

STACKMAPS

Stack maps

<pc1,sz1>

<pc2,sz2>

......

......

......

Relevant concepts: current frame, current method, operand stack,
current max-stack

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Semantics of Instructions

I (PUSH V): push value V onto the current operand stack.
Effects are undefined:

I if the push will overflow the operand stack.
I if the current frame does not exist ...

I (INVOKE method-name): look up method, initialize new
frame, adjust old frame. Effects are undefined,

I if there is not enough values on the operand stack
I ...

I (RETURN):
I effects are undefined, if the value returned will overflow the

caller’s operand stack
I

This specification is incomplete unless one can prove that these
“if” scenarios never arise. The official JVM specification defines
the semantics of the instructions in the similar fashion.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Semantics of Instructions

I (PUSH V): push value V onto the current operand stack.
Effects are undefined:

I if the push will overflow the operand stack.
I if the current frame does not exist ...

I (INVOKE method-name): look up method, initialize new
frame, adjust old frame. Effects are undefined,

I if there is not enough values on the operand stack
I ...

I (RETURN):
I effects are undefined, if the value returned will overflow the

caller’s operand stack
I

This specification is incomplete unless one can prove that these
“if” scenarios never arise. The official JVM specification defines
the semantics of the instructions in the similar fashion.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

What is expected of a specification

I Implementers
I Prefer operationally specified system

I Application programmers
I Need a complete specification

I End users
I Want a complete specification.
I Want a correct and efficient implementation.

As the specification designers, we want a complete and
operationally specified specification. We want to design a virtual
machine that can be implemented efficiently

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

What is expected of a specification

I Implementers
I Prefer operationally specified system

I Application programmers
I Need a complete specification

I End users
I Want a complete specification.
I Want a correct and efficient implementation.

As the specification designers, we want a complete and
operationally specified specification. We want to design a virtual
machine that can be implemented efficiently

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker

Objective: detect potentially unsafe programs before executing
them.

High level view of the static checker:

I The specification demands that each method carries: code +
“proof”.

I The checker checks the “proof” against the code in the
method

I If the checker accepts the “proof”, the method is permitted
for execution.

The difficult task is to design a static checker and to prove it is
effective.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker

Objective: detect potentially unsafe programs before executing
them.

High level view of the static checker:

I The specification demands that each method carries: code +
“proof”.

I The checker checks the “proof” against the code in the
method

I If the checker accepts the “proof”, the method is permitted
for execution.

The difficult task is to design a static checker and to prove it is
effective.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker

Objective: detect potentially unsafe programs before executing
them.

High level view of the static checker:

I The specification demands that each method carries: code +
“proof”.

I The checker checks the “proof” against the code in the
method

I If the checker accepts the “proof”, the method is permitted
for execution.

The difficult task is to design a static checker and to prove it is
effective.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 0, opsize=0>

Check

I (a) opsize = 0+1 < 3
= max-stack

I (b) next pc in range

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 1, opsize=1>

Check

I (a) opsize = 1+1 < 3
= max-stack

I (b) next pc in range

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 2, opsize=2>

Check

I (a) opsize - 1 < 3 =
max-stack

I (b.1) IFEQ target in
range

I (b.2) opsize = 2-1 =
1 = stackmap(4)

I (c) next pc in range

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 3, opsize=1>

Check

I (a) opsize = 1 >= 1
= nargs

I (b) next pc in range

I (c) opsize -1 +1 =
stackmap(4)

I (d) opsize -1 +1 <=
max-stack

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 4, opsize=1>

1

Check

I (a) opsize = 1 =
stackmap(4)

I (b)
I either next pc in

range and
stackmap(npc)
defined

I or there is no more
code

I (c) enough operands

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Specification
Static checker

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

END OF CODE

1

Verified!

I Success

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Static checker

State representation

State representation: use the misc/record book.

Call−stack

<call frame 2>

<call frame 1>

......

......

......

opstack

locals

pc 1

....

m−name "B"

Method

name "A"

max−stack 3

Code

POP

PUSH

...

IFEQ 3

INVOKE "B"

RETURN

NARGS 2

<value>

<value>

......

......

......

 Operand−stack

Method−table

"A"

"B"

Call−frame

STACKMAPS

Stack maps

<pc1,sz1>

<pc2,sz2>

......

......

......

I (current-frame s) = (top (g ’call-stack s))
I (current-method s) = (binding (g ’method-name (current-frame s))

(g ’method-table s))
I Max stack: (max-stack s) = (g ’max-stack (current-method s))

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Static checker

State transition functions

State transition functions:

(defun djvm-check-INVOKE (inst st)

(let* ((method-name (arg inst))

(method-table (g ’method-table st))

(method (binding method-name method-table))

(nargs (g ’nargs method)))

(and (consistent-state st)

(bound? method-name method-table)

(<= 0 (g ’max-stack

(binding method-name method-table)))

(integerp nargs)

(<= 0 nargs)

(<= nargs (len (op-stack st)))

(<= (+ 1 (- (len (op-stack st))

nargs))

(g ’max-stack (topx (g ’call-stack st))))

(pc-in-range (set-pc (+ 1 (get-pc st))

st)))))

(defun execute-INVOKE (inst st)

(let* ((method-name (arg inst))

(method-table (g ’method-table st))

(method (binding method-name

method-table))

(nargs (g ’nargs method)))

(pushInitFrame

method-name

(init-locals (op-stack st) nargs)

(set-pc (+ 1 (get-pc st))

(popStack-n st nargs)))))

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Interpreter
Static checker

Static Checker Model

The static checker implementation follows the JVM bytecode
verifier’s specification

(defun bcv-method (method method-table)
(let* ((code (g ’code method))

(maps (g ’stackmaps method)))
(and (wff-code (parsecode code))

(wff-maps maps)
(merged-code-safe
(mergeStackMapAndCode

maps
(parsecode code)
(g ’method-name method)
method-table)

(sig-method-init-frame method
method-table)))))

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker

Recall the high level view of the static checker as “proof checkers”.
The “proof checking” algorithm merges the stack maps and code
into a sequence. It then symbolically executes the sequence.

I Before executing an instruction, the algorithm checks whether
it is safe to execute the instruction.

I When encounters a stack map, the algorithm matches the
current abstract state against the stack map.

I The algorithm accepts the code, if the symbolic execution
reaches the end of the sequence without error.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 0, opsize=0>

Check

I (a) opsize = 0+1 < 3
= max-stack

I (b) next pc in range

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 1, opsize=1>

Check

I (a) opsize = 1+1 < 3
= max-stack

I (b) next pc in range

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 2, opsize=2>

Check

I (a) opsize - 1 < 3 =
max-stack

I (b.1) IFEQ target in
range

I (b.2) opsize = 2-1 =
1 = stackmap(4)

I (c) next pc in range

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS 1

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 3, opsize=1>

Check

I (a) opsize = 1 >= 1
= nargs

I (b) next pc in range

I (c) opsize -1 +1 =
stackmap(4)

I (d) opsize -1 +1 <=
max-stack

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

<pc = 4, opsize=1>

1

Check

I (a) opsize = 1 =
stackmap(pc)

I (b)
I either next pc in

range and
stackmap(npc)
defined

I or there is no more
code

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checker: algorithm

Static checker executes the method symbolically, maintaining an
abstract state: <pc, opsize>.

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

name

max−stack 3

Code

"C"

Method

STACKMAPS

NARGS

<4,1>

Stack maps

PUSH 5

PUSH 1

IFEQ 4

INVOKE "C"

RETURN

Code

END OF CODE

1

Verified!

I Success

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Why static checking works?

For PUSH and POP, the static checker’s execution approximates the
actual execution.

Static checker’s executions diverge from the concrete executions
when the static checker encounters IFEQ, INVOKE, RETURN.

I Static checker never takes the branch.

I Static checker assumes that INVOKE always returns.

I Static checker executes past RETURN

The static checker demands that the stackmap are provided at the
branch targets (and immediately after the RETURN as well).
Intuition is:

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Why static checking works?

For PUSH and POP, the static checker’s execution approximates the
actual execution.

Static checker’s executions diverge from the concrete executions
when the static checker encounters IFEQ, INVOKE, RETURN.

I Static checker never takes the branch.

I Static checker assumes that INVOKE always returns.

I Static checker executes past RETURN

The static checker demands that the stackmap are provided at the
branch targets (and immediately after the RETURN as well).
Intuition is:

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Why static checking works?

For PUSH and POP, the static checker’s execution approximates the
actual execution.

Static checker’s executions diverge from the concrete executions
when the static checker encounters IFEQ, INVOKE, RETURN.

I Static checker never takes the branch.

I Static checker assumes that INVOKE always returns.

I Static checker executes past RETURN

The static checker demands that the stackmap are provided at the
branch targets (and immediately after the RETURN as well).
Intuition is:

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Why static checking works?

Intuition:

I Any concrete execution can be “chopped” into segments.

I Executing a verified program, every segment is approximated
with some segment from the static checker execution on the
program.

" A" Execution "B"

Return

Invoke "B"

" A" Execution

IFEQ X

X:

is reached, the state
at X has that signature

checks that the sig.
at location "X" is
compatible with the
signature right after
executing IFEQ

Note: the checker

No matter how X

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

How to formalize it

Either:

I Formalize the idea of trace and segments explicitly

" A" Execution "B"

Return

S2 S2’

S0’

S1’

S0

S1

S2’’

 S0’−S1’ + S2’’−S2’ approx S0−S2

Invoke "B"

I Or, formalize the concept that a machine state is “on-track”
with some static checker’s execution

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

How to formalize it

Either:

I Formalize the idea of trace and segments explicitly

" A" Execution "B"

Return

S2 S2’

S0’

S1’

S0

S1

S2’’

 S0’−S1’ + S2’’−S2’ approx S0−S2

Invoke "B"

I Or, formalize the concept that a machine state is “on-track”
with some static checker’s execution

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Consistent state

Concept of “on-track”

Invoke "B"

" A" Execution "B"

Return

S1

S2

S3’

S2’

S1’

S3

S2 "on−track" with S2’ + S2’’

S2’’

The machine state has a call stack that records the execution
history upto now.

I Each caller’s call frame corresponds to some “unfinished”
execution of some subprogram.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Approach

Observations:

I The original static checker returns “yes” and “no”

I We need the intermediate state of symbolic simulation to
state the “on-track” properties.

Rough solution ideas:

I Imagine an “observer” X that monitors the static checker run
and records the intermediate states that static checker
encountered.

I State “on-track” property.

I Prove when the static checker succeeds, “on-track” property
is preserve.

I Prove when “on-track” is true and the static checker succeeds,
effects of executing machine operations are well defined.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Approach

Observations:

I The original static checker returns “yes” and “no”

I We need the intermediate state of symbolic simulation to
state the “on-track” properties.

Rough solution ideas:

I Imagine an “observer” X that monitors the static checker run
and records the intermediate states that static checker
encountered.

I State “on-track” property.

I Prove when the static checker succeeds, “on-track” property
is preserve.

I Prove when “on-track” is true and the static checker succeeds,
effects of executing machine operations are well defined.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Extra complications

Observations:

I The original static checker returns “yes” and “no” for the
whole program

I However, we are proving step-wise properties: (1) “on-track”
is preserved (2) when “on-track”, it is safe to execute a step.
We need to reason about the corresponding small step taken
by the static checker.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Extra complications

Rough solution ideas:

I A simpler checker which expects that every instruction is
annotated with stackmaps.

I The simpler checker checks that for every instruction, it is
safe execute the instruction under the specified context and
the resulting states of executing the instruction are compatible
with annotations.

I Prove the machine is “on-track” with this simpler checker.

I Prove if the original static checker succeeds, the observer X
generates annotations that makes the simpler checker succeed.

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checking is effective

“Progress”

(defthm djvm-check-succeed-in-consistent-state
(implies (and (CONSISTENT-STATE DJVM-S)

(bcv-verified-method-table
(g ’method-table djvm-s)))

(djvm-check-step djvm-s)))

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checking is effective

“Preservation”

(defthm djvm-step-preserve-consistent-state
(implies (consistent-state st)

(consistent-state (djvm-step st))))

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checking is effective

“The static checker allows efficient implementation”

(defthm verified-program-executes-safely
(implies (and (consistent-state djvm-s)

(state-equiv jvm-s djvm-s)
(bcv-verified-method-table

(g ’method-table djvm-s)))
(state-equiv (m-run jvm-s n)

(djvm-run djvm-s n))))

Hanbing liu Specification and verification of a simple machine

Simple Virtual Machine
Formal Virtual Machine Model
The Static Checker Is Effective

Algorithm
Intuition
Approach
Result

Static checking is effective

“Verified code never overflow operand stack”

(defthm verified-program-never-overflow-operand-stack-in-jvm
(implies
(and (consistent-state djvm-s)

(state-equiv jvm-s djvm-s)
(all-method-verified (g ’method-table djvm-s)))

(<= (len (g ’op-stack (topx (g ’call-stack (m-run jvm-s n))))
(max-stack
(binding
(g ’method-name (topx (g ’call-stack (m-run jvm-s n))))
(g ’method-table jvm-s)))))))

Hanbing liu Specification and verification of a simple machine

	Simple Virtual Machine
	Interpreter
	Specification
	Static checker

	Formal Virtual Machine Model
	Interpreter
	Static checker

	The Static Checker Is Effective
	Algorithm
	Intuition
	Approach
	Result

