
Definitional Equations in ACL2

Sandip Ray

Department of Computer Science
University of Texas at Austin

Email: sandip@cs.utexas.edu
web: http://www.cs.utexas.edu/users/sandip

Joint work with J Strother Moore

UNIVERSITY OF TEXAS AT AUSTIN



DEPARTMENT OF COMPUTER SCIENCES

Background

ACL2 provides a definitional principle to introduce new (recursive)
function definitions:

(defun factorial (x)
(if (zp x) 1

(* x (factorial (- x 1)))))

The effect is to extend the current ACL2 theory with a new axiom:

(equal (factorial x)
(if (zp x) 1

(* x (factorial (- x 1)))))

UNIVERSITY OF TEXAS AT AUSTIN 1



DEPARTMENT OF COMPUTER SCIENCES

Background

ACL2 provides a definitional principle to introduce new function
definitions:

(defun factorial (x)
(if (zp x) 1

(* x (factorial (- x 1)))))

To admit a function, we must show that there is an ordinal measure that
decreases along every recursive call.

1. (o-p (nfix x))

2. (implies (not (zp x)) (o< (nfix (- x 1)) (nfix x)))

UNIVERSITY OF TEXAS AT AUSTIN 2



DEPARTMENT OF COMPUTER SCIENCES

Background

ACL2 provides a definitional principle to introduce new function
definitions:

(defun factorial (x)
(if (zp x) 1

(* x (factorial (- x 1)))))

To admit a function, we must show that there is an ordinal measure that
decreases along every recursive call.

This ensures that there exists one unique function satisfying the
equation.

UNIVERSITY OF TEXAS AT AUSTIN 3



DEPARTMENT OF COMPUTER SCIENCES

Background

ACL2 provides a definitional principle to introduce new function
definitions:

(defun factorial (x)
(if (zp x) 1

(* x (factorial (- x 1)))))

To admit a function, we must show that there is an ordinal measure that
decreases along every recursive call.

This ensures that there exists one unique function satisfying the
equation.

It also justifies the use of induction based on the induction scheme
suggested by the function.

UNIVERSITY OF TEXAS AT AUSTIN 4



DEPARTMENT OF COMPUTER SCIENCES

Definitional Equation

In some cases, we might be only interested in the definitional equation
(not the induction axioms).

Then it should be possible to introduce more defining equations (as long
as we do not also introduce the corresponding induction axioms).

UNIVERSITY OF TEXAS AT AUSTIN 5



DEPARTMENT OF COMPUTER SCIENCES

Definitional Equation

In some cases, we might be only interested in the definitional equation
(not the induction axioms).

We can do this by using encapsulation .

UNIVERSITY OF TEXAS AT AUSTIN 6



DEPARTMENT OF COMPUTER SCIENCES

Encapsulation

Encapsulation allows us to introduce function symbols by specifying
certain properties (or constraints ).

Soundness requires that we show some witnessing function that
satisfies the postulated constraints.

If we want to introduce a definitional equation in ACL2 we can show that
there is some function satisfying this equation.

UNIVERSITY OF TEXAS AT AUSTIN 7



DEPARTMENT OF COMPUTER SCIENCES

Using encapsulation

(encapsulate
(((triple-rev *) => *))
(local (defun triple-rev (x) ...))
(defthm triple-rev-def

(equal (triple-rev x)
(cond ((endp x) nil)

((endp (cdr x)) (list (car x)))
(t (let* ((b@c (cdr x))

(c@rev-b (triple-rev b@c))
(rev-b (cdr c@rev-b))
(b (triple-rev rev-b))
(a (car x))
(a@b (cons a b))
(rev-b@a (triple-rev a@b))
(c (car c@rev-b))
(c@rev-b@a (cons c rev-b@a)))

c@rev-b@a))))))

UNIVERSITY OF TEXAS AT AUSTIN 8



DEPARTMENT OF COMPUTER SCIENCES

Using encapsulation

Using encapsulation we can introduce alternative efficient defining
equations for the same function.

Using mbe, we can then use these alternative definitions for execution if
desired.

UNIVERSITY OF TEXAS AT AUSTIN 9



DEPARTMENT OF COMPUTER SCIENCES

Encapsulation goodies

But we can achieve more things!� We can show that there are generic classes of defining equations that
can be introduced in the ACL2 logic.

One example is tail-recursive equations.

(equal (f x) (if (test x) (base x) (f (recur x))))

Manolios and Moore (2000) showed that any tail-recursive equation can
be introduced in ACL2.

UNIVERSITY OF TEXAS AT AUSTIN 10



DEPARTMENT OF COMPUTER SCIENCES

In this Talk

We will consider more general defining equations:

(equal (f x)
(if (test x)

(base x)
(wrap x (f (recur x)))))

We will investigate one sufficient condition under which this equation is
admissible.

UNIVERSITY OF TEXAS AT AUSTIN 11



DEPARTMENT OF COMPUTER SCIENCES

Non-triviality

Not all such equations should be admissible.

Consider the equation:

(equal (nils x)
(if (equal x 0) nil (cons nil (nils (- x 1)))))

UNIVERSITY OF TEXAS AT AUSTIN 12



DEPARTMENT OF COMPUTER SCIENCES

Non-triviality

Not all such equations should be admissible.

Consider the equation:

(equal (nils x)
(if (equal x 0) nil (cons nil (nils (- x 1)))))

But consider the following equation:

(equal (num x)
(if (equal x 0) 0 (+ 1 (num (- x 1)))))

Is this axiom also inconsistent?

UNIVERSITY OF TEXAS AT AUSTIN 13



DEPARTMENT OF COMPUTER SCIENCES

Non-triviality

Not all such equations should be admissible.

Consider the equation:

(equal (nils x)
(if (equal x 0) nil (cons nil (nils (- x 1)))))

But consider the following equation:

(equal (num x)
(if (equal x 0) 0 (+ 1 (num (- x 1)))))

Is this axiom also inconsistent?

No.

UNIVERSITY OF TEXAS AT AUSTIN 14



DEPARTMENT OF COMPUTER SCIENCES

A Little History

On February 21, 2004, Vinod Vishwanath gave a presentation on
defining a sequential simplifier in ACL2.

Quick Note: I do not quite know what a sequential simplifier is.

His definition was of the form

(equal (f x)
(if (test x)

(base x)
(wrap x (f (recur x)))))

But the recursive equation was not terminating!

UNIVERSITY OF TEXAS AT AUSTIN 15



DEPARTMENT OF COMPUTER SCIENCES

Some Observations

We can of course artificially terminate the equation by recurring up to a
fixed upper bound.

(defun fn (x n)
(if (or (test x) (zp n)) (base x)

(wrap x (fn (recur x) (- n 1)))))

UNIVERSITY OF TEXAS AT AUSTIN 16



DEPARTMENT OF COMPUTER SCIENCES

Some Observations

We can of course artificially terminate the equation by recurring up to a
fixed upper bound.

(defun fn (x n)
(if (or (test x) (zp n)) (base x)

(wrap x (fn (recur x) (- n 1)))))

Suppose we can then prove that for each x there is some “large enough”
n beyond which we need not bother to bound.

UNIVERSITY OF TEXAS AT AUSTIN 17



DEPARTMENT OF COMPUTER SCIENCES

Some Observations

We can of course artificially terminate the equation by recurring up to a
fixed upper bound.

(defun fn (x n)
(if (or (test x) (zp n)) (base x)

(wrap x (fn (recur x) (- n 1)))))

Suppose we can then prove that for each x there is some “large enough”
n beyond which we need not bother to bound.

(natp (clock x))
(implies (and (natp n) (>= n (clock x)))

(equal (fn x (+ n 1)) (fn x n)))

UNIVERSITY OF TEXAS AT AUSTIN 18



DEPARTMENT OF COMPUTER SCIENCES

Some Observations

We can of course artificially terminate the equation by recurring up to a
fixed upper bound.

(defun fn (x n)
(if (or (test x) (zp n)) (base x)

(wrap x (fn (recur x) (- n 1)))))

Suppose we can then prove that for each x there is some “large enough”
n beyond which we need not bother to bound.

(natp (clock x))
(implies (and (natp n) (>= n (clock x)))

(equal (fn x (+ n 1)) (fn x n)))

Then is it ok to introduce the original axiom for f ?

UNIVERSITY OF TEXAS AT AUSTIN 19



DEPARTMENT OF COMPUTER SCIENCES

Some Observations

We can of course artificially terminate the equation by recurring up to a
fixed upper bound.

(defun fn (x n)
(if (or (test x) (zp n)) (base x)

(wrap x (fn (recur x) (- n 1)))))

Suppose we can then prove that for each x there is some “large enough”
n beyond which we need not bother to bound.

(natp (clock x))
(implies (and (natp n) (>= n (clock x)))

(equal (fn x (+ n 1)) (fn x n)))

Then is it ok to introduce the original axiom for f ?

Yes.

UNIVERSITY OF TEXAS AT AUSTIN 20



DEPARTMENT OF COMPUTER SCIENCES

The defpun Intuition

Consider the proof that every tail-recursive definition can be introduced.

(defstub test (*) => *)
(defstub base (*) => *)
(defstub recur (*) => *)

We want to introduce the axiom:

(equal (f x)
(if (test x)

(base x)
(f (recur x))))

UNIVERSITY OF TEXAS AT AUSTIN 21



DEPARTMENT OF COMPUTER SCIENCES

The defpun Intuition

The recipe (Manolios and Moore, 2000) :

Consider the bounded version of f :

(defun fn (x n)
(if (or (test x) (zp n)) (base x)

(fn (recur x) (- n 1))))

UNIVERSITY OF TEXAS AT AUSTIN 22



DEPARTMENT OF COMPUTER SCIENCES

The defpun Intuition

Now choose a large enough n if such an n exists.

(defun recur-n (x n)
(if (zp n) x

(recur-n (recur x) (- n 1))))

(defun-sk f-terminates (x)
(exists n (test (recur-n x n))))

Then define f as follows:

(defun f (x)
(if (f-terminates x) (fn x (f-terminates-witness x))

42))

UNIVERSITY OF TEXAS AT AUSTIN 23



DEPARTMENT OF COMPUTER SCIENCES

The defpun Proof

The definition:

(defun f (x)
(if (f-terminates x) (fn x (f-terminates-witness x))

42))

The theorem:

(equal (f x)
(if (test x)

(base x)
(f (recur x))))

UNIVERSITY OF TEXAS AT AUSTIN 24



DEPARTMENT OF COMPUTER SCIENCES

Complications in Our Case

(equal (f x)
(if (test x) (base x)

(wrap x (f (recur x)))))

We do not know that eventually test becomes true, but only that the
bounded version stabilizes.

Consider

(defun test (x) nil)
(defun wrap (x y) y)
(defun recur (x) x)

UNIVERSITY OF TEXAS AT AUSTIN 25



DEPARTMENT OF COMPUTER SCIENCES

Our Proof

Let us recount what we have:

1. (fn x n) = (if (or (zp n) (test x))
(base x)

(wrap x (fn (recur x) (- n 1))))

We also have an upper bound:

T0: (natp n) /\ n >= (clock x) ==> (fn x n+1) = (fn x n)

We can define c such that:

T1: (natp (c x))
T2: 0 < (c x) ==> (fn x (c x)) /= (fn x (c x)-1)
T3: (natp n) /\ n >= (c x) ==> (fn x n+1) = (fn x n)

The function we are seeking is:

(f x) = (fn x (c x))

UNIVERSITY OF TEXAS AT AUSTIN 26



DEPARTMENT OF COMPUTER SCIENCES

The Proof

To prove:

(f x) = (if (test x) (base x)
(wrap x (f (recur x))))

Or,

(fn x (c x)) = (if (test x) (base x)
(wrap x (fn (recur x) (c (recur x)))))

Some Lemmas:

L1: (natp i) /\ (natp j) /\ i >= (c x) => (fn x i) = (fn x (c x))
L2. 0 < (c x) ==> (c x) - 1 <= (c (recur x))

L1 is trivial by induction.

UNIVERSITY OF TEXAS AT AUSTIN 27



DEPARTMENT OF COMPUTER SCIENCES

Proof of L2

Observation: If (c x) > 0 , then (test x) does not hold. Otherwise,

o For all nats i, j (fn x i) = (fn x j) = (base x)
o Therefore [T1, T2] (c x) = 0

Assume (c x) - 1 > (c (recur x)) :

(fn x (c x))
= [ ˜(test x), 0 < (c x) ]

(wrap x (fn (recur x) (- (c x) 1)))
= [T3 ((recur x) for x), assumption]

(wrap x (fn (recur x) (c (recur x))))
= [ (c x) - 2 >= (c (recur x)), T3]

(wrap x (fn (recur x) (- (c x) 2)))
= [Definition]

(fn x (- (c x) 1))

This is contradiction to T2.

UNIVERSITY OF TEXAS AT AUSTIN 28



DEPARTMENT OF COMPUTER SCIENCES

The Main Proof

(fn x (c x)) = (if (test x) (base x)
(wrap x (fn (recur x) (c (recur x)))))

The proof is by case analysis.

Case 1 : (c x) = 0
Case 1.1: (test x)
LHS = RHS = (base x)
Case 1.2: (not (test x))

RHS
= [ ˜(test x) ]

(wrap x (fn (recur x) (c (recur x))))
= [ (natp (c (recur x))), ˜(test x)]

(fn x (+ (c (recur x)) 1))
= [L1, (c x) = 0, (natp (c (recur x)))]

(fn x 0)
= LHS

UNIVERSITY OF TEXAS AT AUSTIN 29



DEPARTMENT OF COMPUTER SCIENCES

The Main Proof, Cont’d

Case 2: (c x) > 0
(fn x (c x))

= [L2, T3]
(fn x (1+ (c (recur x))))

= [Definition, ˜ (test x) since (c x) > 0]
(wrap x (fn (recur x) (c (recur x))))

= [ ˜(test x)]
(if (test x) (base x)

(wrap x (fn (recur x) (c (recur x)))))

UNIVERSITY OF TEXAS AT AUSTIN 30



DEPARTMENT OF COMPUTER SCIENCES

An Interesting Aside

Suppose the stabilization condition was instead:

(defun recur-n (x n)
(if (test x) x

(if (zp n) x
(recur-n (recur x) (1- n)))))

(defthm clock-natp (natp (clock-fn x)))
(defthm test-eventually-is-true

(test (recur-n x (clock-fn x))))

Then we can actually do a defun .

(defun f (x)
(declare (xargs :measure ...))
(if (test x) (base x)

(wrap x (f (recur x)))))

Trivial Exercise: Come up with a measure given the above conditions.

UNIVERSITY OF TEXAS AT AUSTIN 31



DEPARTMENT OF COMPUTER SCIENCES

Other Work on Primitive Recursive Admission

Cowles showed the following condition to be sufficient.

(exists c (equal (wrap x c) c))

He shows that Manolios-Moore construction works for that case.

Thus the following axiom is admissible.

(equal (factorial x)
(if (equal x 0) 1

(* x (factorial (- x 1)))))

UNIVERSITY OF TEXAS AT AUSTIN 32



DEPARTMENT OF COMPUTER SCIENCES

Other Work on Primitive Recursive Admission

But the following will not be, although it is consistent:

(equal (num x)
(if (equal x 0) 0

(+ 1 (num (- x 1)))))

Question: Is there a more systematic way to find sufficient conditions for
generalized primitive recursive equations?

UNIVERSITY OF TEXAS AT AUSTIN 33


