
Application-Level
Checkpoint-restart (CPR)

for MPI Programs

Keshav Pingali

Joint work with Dan Marques, Greg Bronevetsky,
Paul Stodghill, Rohit Fernandes

The Problem

• Old picture of high-performance
computing:
– Turn-key big-iron platforms
– Short-running codes

• Modern high-performance computing:
– Roll-your-own platforms

• Large clusters from commodity parts
• Grid Computing

– Long-running codes
• Protein-folding on BG may take 1 year

• Program runtimes are exceeding MTBF
– ASCI, Blue Gene, Illinois Rocket Center

Software view of hardware failures

• Two classes of faults
– Fail-stop: a failed processor ceases all

operation and does not further corrupt
system state

– Byzantine: arbitrary failures
• Nothing to do with adversaries

• Our focus:
– Fail-Stop Faults

Solution Space for Fail-stop Faults

• Checkpoint-restart (CPR) [Our Choice]
– Save application state periodically
– When a process fails, all processes go back to last

consistent saved state.
• Message Logging

– Processes save outgoing messages
– If a process goes down it restarts and neighbors

resend it old messages
– Checkpointing used to trim message log
– In principle, only failed processes need to be

restarted
– Popular in the distributed system community
– Our experience: not practical for scientific

programs because of communication volume

Solution Space for CPR

Checkpointing

Uncoordinated

Coordinated
Blocking

Non-Blocking
Quasi-Synchronous

 Application
level

System
level

Saving
Process

state

Coordination

 Saving process state

• System-level (SLC)
– save all bits of machine
– program must be restarted on same platform

• Application-level (ALC) [Our Choice]
– programmer chooses certain points in program to

save minimal state
– programmer or compiler generate save/restore code
– amount of saved data can be much less than in

system-level CPR (e.g., n-body codes)
– in principle, program can be restarted on a totally

different platform
• Practice at National Labs

– demand vendor provide SLC
– but use hand-rolled ALC in practice!

 Coordinating checkpoints

• Uncoordinated
– Dependency-tracking, time-coordinated, …
– Suffer from exponential rollback

• Coordinated [Our Choice]

– Blocking
• Global snapshot at a Barrier
• Used in current ALC implementations

– Non-blocking
• Chandy-Lamport

Blocking Co-ordinated Checkpointing

• Many programs are bulk-synchronous (BSP model of
Valiant)

• At barrier, all processes can take checkpoints.
– assumption: no messages are in-flight across the barrier

• Parallel program reduces to sequential state saving
problem

• But many new parallel programs do not have global
barriers..

P

Q

R

Barrier Barrier Barrier

Non-blocking coordinated checkpointing

• Processes must be coordinated, but …
• Do we really need to block all processes

before taking a global checkpoint?

?
!

K. Mani Chandy Leslie Lamport

Process P

Process Q

Initiator

Global View

• Initiator
– root process that decided to take a global checkpoint once in a while

• Recovery line
– saved state of each process (+ some additional information)
– recovery lines do not cross

• Epoch
– interval between successive recovery lines

• Program execution is divided into a series of disjoint epochs
• A failure in epoch n requires that all processes roll back to the

recovery line that began epoch n

Epoch 0 Epoch 1 Epoch 2 …… Epoch n

Possible Types of Messages

• On Recovery:
– Past message will be left alone.
– Future message will be reexecuted.
– Late message will be re-received but not resent.
– Early message will be resent but not re-received.

 Non-blocking protocols must deal with late and early
messages.

P’s Checkpoint

Q’s Checkpoint

Process P

Process Q
Late Message

Past
Message Future

Message

Early Message

Difficulties in recovery: (I)

• Late message: m1
– Q sent it before taking checkpoint
– P receives it after taking checkpoint

• Called in-flight message in literature
• On recovery, how does P re-obtain message?

P

Q

x

x
m1

Difficulties in recovery: (II)

• Early message: m2
– P sent it after taking checkpoint
– Q receives it before taking checkpoint

• Called inconsistent message in literature
• Two problems:

– How do we prevent m2 from being re-sent?
– How do we ensure non-deterministic events in P relevant to

m2 are re-played identically on recovery?

P

Q

x

x
m2

Approach in systems community

• Ensure we never have to worry about inconsistent
messages during recovery

• Consistent cut:
– Set of saved states, one per process
– No inconsistent message

 saved states must form a consistent cut
• Ensuring this: Chandy-Lamport protocol

P

Q

x

x

x

x

x

x

Chandy-Lamport protocol

• Processes
– one process initiates taking of global snapshot

• Channels:
– directed
– FIFO
– reliable

• Process graph:
– Fixed topology
– Strongly connected component

p q

r

c1

c2

c3c4

Algorithm explanation

1. Coordinating process state-saving
– How do we avoid inconsistent messages?

2. Saving in-flight messages
3. Termination

Next: Model of Distributed System

Step 1: co-ordinating process state-saving

• Initiator:
– Save its local state
– Send a marker token on each outgoing edge

• Out-of-band (non-application) message

• All other processes:
– On receiving a marker on an incoming edge for

the first time
• save state immediately
• propagate markers on all outgoing edges
• resume execution.

– Further markers will be eaten up.

Next: Example

Example

p q

r

c1

c2

c3c4

initiator

p

q

r
marker

checkpoint

x x

x
x x

Next: Proof

Theorem: Saved states form consistent cut

p q
x

x
x

x

x

p

q

Let us assume that a message m exists,
and it makes our cut inconsistent.

m

Next: Proof (cont’)

• Proof(cont’)
p q

x

x
x1

x2

x

p

q
m

x1

p

q
m

x1

x2

x2

(2) x1 is not the 1st marker
 for process q

(1) x1 is the 1st marker
 for process q

Step 2:recording in-flight messages

p

q

• Process p saves all messages on channel c that are received
• after p takes its own checkpoint
• but before p receives marker token on channel c

In-flight
messages

Example

p

x

x
x

q
r s

t u

1
2

3

4

5
6

7

8

(1) p is receiving messages

p
x

x
x

q
r s

t u

4

5
6

7

8

(2) p has just saved its state

x

Example(cont’)

p

q

r

s

p

x

x
x

q
r s

t u

1
2

3

4

5
6

7

8

p’s chkpnt triggered by a marker from q

x

x x
x

x

x

x

1 2 3 4 5 6 7 8

Next: Algorithm (revised)

Algorithm (revised)

• Initiator: when it is time to checkpoint
• Save its local state
• Send marker tokens on all outgoing edges
• Resume execution, but also record incoming messages on e

ach in-channel c until marker arrives on channel c
• Once markers are received on all in-channels, save in-flight

messages on disk
• Every other process: when it sees first marker on any in-channel

• Save state
• Send marker tokens on all outgoing edges
• Resume execution, but also record incoming messages on e

ach in-channel c until marker arrives on channel c
• Once markers are received on all in-channels, save in-flight

messages on disk

Step 3: Termination of algorithm

• Did every process save its state and
its in-flight messages?
– outside scope of C-L paper

p

q

r

initiator

• direct channel to the initiator?
• spanning tree?

Next: References

Comments on C-L protocol

• Relied critically on some assumptions:
– Process can take checkpoint at any time during

execution
• get first marker save state

– FIFO communication
– Fixed communication topology
– Point-to-point communication: no group

communication primitives like bcast

• None of these assumptions are valid for
application-level checkpointing of MPI
programs

Application-Level Checkpointing (ALC)

• At special points in application the
programmer (or automated tool) places calls
to a take_checkpoint() function.

• Checkpoints may be taken at such spots.
• State-saving:

– Programmer writes code
– Preprocessor transforms program into a version

that saves its own state during calls to
take_checkpoint().

Application-level checkpointing difficulties

• System-level checkpoints can be taken anywhere
• Application-level checkpoints can only be taken at

certain places in program
• This may lead to inconsistent messages
 Recovery lines in ALC may form inconsistent cuts

Process P

Process Q
Process P

Process Q

Possible Checkpoint Locations

P’s Checkpoint

Our protocol (I)

• Initiator checkpoints, sends pleaseCheckpoint
message to all others

• After receiving this message, process
checkpoints at the next available spot
– Sends every other process Q the number of messages

sent to Q in the last epoch

Process P

Process Q

Initiator

pleaseCheckpoint

Recovery Line

Protocol Outline (II)

• After checkpointing, each process keeps a
record, containing:
– data of messages from last epoch (Late messages)
– non-deterministic events:

• In our applications, non-determinism arises from wild-card
MPI receives

Process P

Process Q

Initiator

pleaseCheckpoint

Recording…

Protocol Outline (IIIa)

• Globally, ready to stop recording when
– all processes have received their late

messages
– no process can send early message

• safe approximation: all processes have taken
their checkpoints

Process P

Process Q

Initiator

Protocol Outline (IIIb)

• Locally, when a process
– has received all its late messages

⇒ sends a readyToStopRecording
message to Initiator.

Process P

Process Q

Initiator
readyToStopRecording

Protocol Outline (IV)

• When initiator receives readyToStopRecording
from everyone, it sends stopRecording to
everyone

• Process stops recording when it receives
– stopRecording message from initiator OR
– message from a process that has itself stopped

recording

Process P

Process Q

Initiator

Application
Message

stopRecording
stopRecording

Protocol Discussion

• Why can’t we just wait to receive
stopRecording message?

• Our record would depend on a non-
deterministic event, invalidating it.
– The application message may be different or may

not be resent on recovery.

Process P

Process Q

Initiator
stopRecording

?
Application

Message

Non-FIFO channels

• In principle, we can piggyback epoch number
of sender on each message

• Receiver classifies message as follows:
– Piggybacked epoch < receiver epoch: late
– Piggybacked epoch = receiver epoch: intra-epoch
– Piggybacked epoch > receiver epoch: early

Recovery Line
Process P

Process Q

Epoch n Epoch n+1

Non-FIFO channels

• We can reduce this to one bit:
– Epoch color alternates between red and green
– Piggyback sender epoch color on message
– If piggybacked color is not equal to receiver epoch

color:
• Receiver is logging: late message
• Receiver is not logging: early message

Recovery Line
Process P

Process Q

Epoch n Epoch n+1

Message #51

Implementation details

• Out-of-band messages
– Whenever application program does a send or

receive, our thin layer also looks to see if any out-
of-band messages have arrived

– May cause a problem if a process does not
exchange messages for a long time but this is not
a serious concern in practice

• MPI features
– non-blocking communication
– Collective communication

• Save internal state of MPI library
• Write global checkpoint out to stable storage

Research issue

• Protocol is sufficiently complex that it is
easy to make errors

• Shared-memory protocol
– even more subtle because shared-memory

programs have race conditions

• Is there a framework for proving these
kinds of protocols correct?

