
A Mechanical Analysis of Program Verification
Strategies

Sandip Ray

Department of Computer Sciences
University of Texas at Austin

Email: sandip@cs.utexas.edu
web: http://www.cs.utexas.edu/users/sandip

Joint work with Warren A. Hunt Jr , John Matthews , and J Strother Moore

UNIVERSITY OF TEXAS AT AUSTIN

DEPARTMENT OF COMPUTER SCIENCES

Program Verification

Program verification entails proving the following theorem.

Correctness Theorem: If the program is initiated in a machine at a
state satisfying a certain precondition , then the state reached on
termination of the program satisfies a desired postcondition .

Program verification is one of the earliest and most fertile
application areas of formal reasoning, and mechanical theore m
proving.

UNIVERSITY OF TEXAS AT AUSTIN 1

DEPARTMENT OF COMPUTER SCIENCES

Summary

We formally analyze three verification strategies for determi nistic
sequential programs modeled with operational semantics.
• Stepwise Invariants
• Clock functions
• Inductive Assertions

We show that each strategy is both sound and complete .

Completeness means that if there is any correctness proof of the
program then there is one using any of the strategies.
• The completeness result has been surprising (at least to me and others I have

shown it).

But the proofs are not mathematically deep!
• A careful formalization of the questions essentially leads to the answers.

UNIVERSITY OF TEXAS AT AUSTIN 2

DEPARTMENT OF COMPUTER SCIENCES

Talk Outline

• Operational Semantics and Correctness Theorems
• Proof Strategies
• Analysis of Strategies
• Discussion and Conclusion

UNIVERSITY OF TEXAS AT AUSTIN 3

DEPARTMENT OF COMPUTER SCIENCES

Operational Semantics

“The meaning of a program is defined by its effect on the state
vector.” – John McCarthy, 1962.

• Model states of the machine executing the program as objects
(n -tuples) in a logic.

– Two special state components are the pc and the program being
executed.

• A program is an object, e.g., a list of instructions.

– The semantics of a program is given by defining a language
interpreter , which is a function on states.

UNIVERSITY OF TEXAS AT AUSTIN 4

DEPARTMENT OF COMPUTER SCIENCES

Modeling with Operational Semantics

• Function effect(s, i) specifies the state obtained by executing
instruction i on state s .

• Let curinst be the instruction in program(s) pointed to by pc(s) .
Then step(s) is defined to be effect(s, curinst) .

• We define the concept of running the machine for n steps from state
s by the function run :

run(s, n) ,

s if zp(n)

run(step(s), n − 1) otherwise

• Predicate exit(s) holds if s is a terminating state.

UNIVERSITY OF TEXAS AT AUSTIN 5

DEPARTMENT OF COMPUTER SCIENCES

Correctness Statement

There are two formal notions of correctness, Partial and Total .

Partial Correctness :
For any state p satisfying the precondition, if an exit state q is reachable from p ,
then the postcondition holds for the first such exit state.

∀s, n : pre(s) ∧ natp(n) ∧ exit(run(s, n))

∧ (∀m : natp(m) ∧ (m < n) ⇒ ¬exit(run(s, m)))

⇒ post(run(s, n))

Total Correctness :
Total Correctness = Partial correctness + Termination

Termination :
∀s : pre(s) ⇒ (∃n : natp(n) ∧ exit(run(s, n)))

Each of the formulas can be expressed in the ACL2 logic.

UNIVERSITY OF TEXAS AT AUSTIN 6

DEPARTMENT OF COMPUTER SCIENCES

Talk Outline

• Operational Semantics and Correctness Theorems
• Proof Strategies
• Analysis of Strategies
• Discussion and Conclusion

UNIVERSITY OF TEXAS AT AUSTIN 7

DEPARTMENT OF COMPUTER SCIENCES

A Running Example

1: X:=0
2: Y:=10
3: if (Y ≤ 0) goto 7
4: X:=X+1
5: Y:=Y-1
6: goto 3
7:

• pre(s) , prog-loaded(s) ∧ (pc(s) = 1)
• post(s) , (X (s) = 10)
• exit(s) , (pc(s) = 7)

UNIVERSITY OF TEXAS AT AUSTIN 8

DEPARTMENT OF COMPUTER SCIENCES

Stepwise Invariants

[Origin somewhat unknown, but work of Goldstein and von Neumann
(1961), and Turing (1949) can be viewed as instances of this approach.]

Partial Correctness:
Construct a predicate inv such that the following are theorems:
I1 : ∀s : pre(s) ⇒ inv(s)
I2 : ∀s : inv(s) ∧ ¬exit(s) ⇒ inv(step(s))

I3 : ∀s : inv(s) ∧ exit(s) ⇒ post(s)

Total Correctness:
Additionally define m such that the following are theorems:
I4 : ∀s : inv(s) ⇒ o-p(m(s))

I5 : ∀s : inv(s) ∧ ¬exit(s) ⇒ m(step(s)) ≺ m(s)

Conditions I2 and I5 require that inv and m explicitly
characterize each reachable state.

UNIVERSITY OF TEXAS AT AUSTIN 9

DEPARTMENT OF COMPUTER SCIENCES

Stepwise Invariants

The predicate inv must characterize every pc value.

{T} 1: X:=0
{(X=0)} 2: Y:=10
{ natp(Y) ∧(X+Y=10) } 3: if (Y ≤ 0) goto 7
{ natp(Y) ∧(Y >0) ∧(X+Y=10)} 4: X:=X+1
{ natp(Y) ∧(Y >0) ∧ (X+Y=11)} 5: Y:=Y-1
{ natp(Y) ∧ (X+Y=10)} 6: goto 3
{(X=10)} 7: ...

A similar comment can be made about m in case of total correctness
proof.

UNIVERSITY OF TEXAS AT AUSTIN 10

DEPARTMENT OF COMPUTER SCIENCES

Clock Functions

[Widely used in Boyer-Moore community, usually for total correctness.]

Total Correctness:
Construct a function clock such that the following are theorems:
C1 : ∀s : pre(s) ⇒ natp(clock(s))
C2 : ∀s, n : pre(s) ∧ natp(n) ∧ exit(run(s, n)) ⇒ clock(s) ≤ n

C3 : ∀s : pre(s) ⇒ exit(run(s, clock(s)))
C4 : ∀s : pre(s) ⇒ post(run(s, clock(s)))

Partial Correctness:
Weaken C1 , C3 and C4 to add exit(run(s, n)) in the hypotheses.
C1 ′ : ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ natp(clock(s))
C3 ′ : ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ exit(run(s, clock(s)))
C4 ′ : ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ post(run(s, clock(s)))

Clock functions characterize the number of steps from initiation to exit.
• But this is a characterization of time complexity!

UNIVERSITY OF TEXAS AT AUSTIN 11

DEPARTMENT OF COMPUTER SCIENCES

Clock Functions

1: X:=0
2: Y:=10
3: if (Y ≤ 0) goto 7
4: X:=X+1
5: Y:=Y-1
6: goto 3
7:

We define the clock function by looking at the control structu re of
the program.

loop-taken(s) , (pc(s) = 3) ∧ natp(Y (s)) ∧ (Y (s) > 0) ∧ prog-loaded(s)

loop-clock(s) ,

0 if ¬loop-taken(s)

4 + loop-clock(run(s, 4)) otherwise
clock(s) , 2 + loop-clock(run(s, 2)) + 1

UNIVERSITY OF TEXAS AT AUSTIN 12

DEPARTMENT OF COMPUTER SCIENCES

Inductive Assertions

This is the most commonly advocated approach to program
verification.

[Based on early observations by Goldstein and von Neumann (1961) ,
and Turing (1949) , later refined and generalized by classic works of
Floyd (1967) , Hoare (1969) , Manna (1969) , and Dijkstra (1975) .]

• Annotate program with assertions at certain cutpoints .
• A VCG derives from these a set of Verification Conditions (VCs).
• The VCs are proven by a theorem prover.

Key Features:
• Requires annotations only at cutpoints.
• Requires both a VCG and a theorem prover.

(Aside) King (1969) wrote the first mechanized VCG.

UNIVERSITY OF TEXAS AT AUSTIN 13

DEPARTMENT OF COMPUTER SCIENCES

Inductive Assertions

Recall the stepwise invariant proof.

{T} 1: X:=0
{(X=0)} 2: Y:=10
{ natp(Y) ∧(X+Y=10) } 3: if (Y ≤ 0) goto 7
{ natp(Y) ∧(Y >0) ∧(X+Y=10)} 4: X:=X+1
{ natp(Y) ∧(Y >0) ∧ (X+Y=11)} 5: Y:=Y-1
{ natp(Y) ∧ (X+Y=10)} 6: goto 3
{(X=10)} 7: ...

UNIVERSITY OF TEXAS AT AUSTIN 14

DEPARTMENT OF COMPUTER SCIENCES

Inductive Assertions

In inductive assertions, we only require annotations at the cutpoints,
namely loop tests and program entry and exit.

{T} 1: X:=0
2: Y:=10

{ natp(Y) ∧(X+Y=10) } 3: if (Y ≤ 0) goto 7
4: X:=X+1
5: Y:=Y-1
6: goto 3

{(X=10)} 7: ...

A VCG explores the paths in the annotated program to generate the VCs.
• Language semantics encoded in VCG implementation as formula transformation.

For the path 1 → 2 → 3 the obligation is T ⇒ natp(10) ∧ (0 + 10) = 10 .
• The obligations are discharged by a theorem prover.

UNIVERSITY OF TEXAS AT AUSTIN 15

DEPARTMENT OF COMPUTER SCIENCES

Inductive Assertions in Operational Semantics

The inductive assertions method can be used with operational
semantics, without a VCG.

• It is possible to emulate VCGs by symbolic simulation on operational models.

Possibility first suggested by a cute method due to Moore (2003) , which
could handle partial correctness.
• Consolidated by Matthews, Moore, Ray, Vroon (2006) to handle total correctness.

• Further consolidated by independent efforts of MMRV and Hardin, Smith, Young
(2006) to allow compositionality, effective reasoning about recursive procedures, etc.

• Recently significantly automated for crypto proofs about by Smith and Dill (2007) .

How to do all this is not part of this talk, but we’ll use the MMRV
formalization of inductive assertions.
• HSY and SD use a variant with trivial difference.

UNIVERSITY OF TEXAS AT AUSTIN 16

DEPARTMENT OF COMPUTER SCIENCES

Formalizing Inductive Assertions

Suppose we are given predicates cut and assert specifying the
cutpoints and corresponding assertions.

Define:

csteps(s, i) ,

{

i if cut(s)
csteps(step(s), i + 1) otherwise

Crucial Observation:

• Definition of csteps is tail-recursive
• Manolios and Moore (2003) show that any tail-recursive equation

can be admitted in ACL2 by encapsulation.

(Aside) The admissibility of tail-recursive equations was also used in
Moore’s initial formulation.

UNIVERSITY OF TEXAS AT AUSTIN 17

DEPARTMENT OF COMPUTER SCIENCES

Formalizing Inductive Assertions

Suppose we are given predicates cut and assert specifying the
cutpoints and corresponding assertions.

Define:

csteps(s, i) ,

{

i if cut(s)
csteps(step(s), i + 1) otherwise

nextc(s) ,

{

run(s, csteps(s, 0)) if cut(run(s, csteps(s, 0)))
d otherwise

where cut(d) ⇔ (∀s : cut(s))

For any state s , nextc(s) returns the closest reachable cutpoint from s (if such a
cutpoint exists), otherwise it does not return a cutpoint.

UNIVERSITY OF TEXAS AT AUSTIN 18

DEPARTMENT OF COMPUTER SCIENCES

Formalizing Inductive Assertions

Partial Correctness:
Given an operational model and a set of cutpoints specified by cut (that include
pre and exit states), define assert such that the following are theorems.
V1 : ∀s : pre(s) ⇒ assert(s)
V2 : ∀s : assert(s) ⇒ cut(s)
V3 : ∀s : exit(s) ⇒ cut(s)
V4 : ∀s : assert(s) ∧ exit(s) ⇒ post(s)
V5 : ∀s, n : assert(s) ∧ ¬exit(s) ∧ exit(run(s, n)) ⇒ assert(nextc(step(s)))

Total Correctness:
Additionally define a function rank , weaken V5 to V5 ′ , and prove V6 and V7 .
V5 ′ : ∀s : assert(s) ∧ ¬exit(s) ⇒ assert(nextc(step(s)))

V6 : ∀s : assert(s) ⇒ o-p(rank(s))
V7 : ∀s : assert(s) ∧ ¬exit(s) ⇒ rank(nextc(step(s))) ≺ rank(s)

UNIVERSITY OF TEXAS AT AUSTIN 19

DEPARTMENT OF COMPUTER SCIENCES

Talk Outline

• Operational Semantics and Correctness Theorems
• Proof Strategies
• Analysis of Strategies
• Discussion and Conclusion

UNIVERSITY OF TEXAS AT AUSTIN 20

DEPARTMENT OF COMPUTER SCIENCES

What do We Analyze?

Soundness of a strategy:
The obligations involved logically imply the correctness statements.

Completeness of a strategy:
If a program is partially (totally) correct, then the corresponding proof
obligations for each strategy can be met.
• Often called Cook Completeness .

In this talk we just outline the completeness proofs, since they are more
surprising!

UNIVERSITY OF TEXAS AT AUSTIN 21

DEPARTMENT OF COMPUTER SCIENCES

Completeness: Some elaboration

We need to answer the following questions:

Suppose a program is partially (totally) correct. Then can we always

• define a clock?
• define the appropriate inv and m ?
• given a predicate cut recognizing the cutpoints, define assert and rank?

The answer in each case is Yes, and in each case the proof is
essentially trivial!

UNIVERSITY OF TEXAS AT AUSTIN 22

DEPARTMENT OF COMPUTER SCIENCES

Completeness of Clock Functions

Given: The partial (resp., total) correctness theorem.
We must define a clock that returns the number of steps from a
pre state to the first exit .

esteps(s, i) ,

i if exit(s)
esteps(step(s), i + 1) otherwise

clock(s) , esteps(s, 0)

Exercise:
Use this definition to prove
∀s, n : exit(run(s, n)) ⇒

exit(run(s, clock(s)))∧
natp(clock(s))∧
(natp(n) ⇒ (clock(s) ≤ n))

(Aside) The proof is not completely trivial. Can you see why?

UNIVERSITY OF TEXAS AT AUSTIN 23

DEPARTMENT OF COMPUTER SCIENCES

Completeness of Stepwise Invariants

Given: The partial (resp., total) correctness theorem.

Assume wlog that we have the corresponding clock function pro of,
with the weird clock .

inv(s) , (∃p, m : pre(p)∧
natp(m)∧
(s = run(p, m))∧
((∃α : exit(run(p, α))) ⇒ (m ≤ clock(p))))

m(s) , clock(s)

UNIVERSITY OF TEXAS AT AUSTIN 24

DEPARTMENT OF COMPUTER SCIENCES

Completeness of Stepwise Invariants

Given: The partial (resp., total) correctness theorem, and the predicate
cut .

Assume wlog that we have the corresponding clock function pro of,
with the weird clock .

• Define the weird inv .

assert(s) ,

{

inv(s) if cut(s)
NIL otherwise

rank(s) , clock(s)

UNIVERSITY OF TEXAS AT AUSTIN 25

DEPARTMENT OF COMPUTER SCIENCES

Talk Outline

• Operational Semantics and Correctness Theorems
• Proof Strategies
• Analysis of Strategies
• Discussion and Conclusion

UNIVERSITY OF TEXAS AT AUSTIN 26

DEPARTMENT OF COMPUTER SCIENCES

Why Care about Formalizing Strategies?

The proofs are really trivial, but only after we carefully formalized the
correctness statements and the essence of each strategy.

Without the formalization it is easy to design flawed strategies.

UNIVERSITY OF TEXAS AT AUSTIN 27

DEPARTMENT OF COMPUTER SCIENCES

A Flawed Strategy!

The following proof strategy was suggested by Manolios and Moore
(2003) as a way to prove “partial correctness”.

Define:

stepw(s) ,

s if halted(s)

stepw(step(s)) otherwise

where halted(s) , (step(s) = s) .

Define: (s0 →֒ s) , (stepw(s0) = stepw(s))

Let modify(s) represent the modification of s after executing the program of interest.
Then the the strategy is to prove:

pre(s) ⇒ (s →֒ modify(s))

Can you see the problem with this strategy?

UNIVERSITY OF TEXAS AT AUSTIN 28

DEPARTMENT OF COMPUTER SCIENCES

Random Remarks

The proofs of soundness and completeness are generic.
• Done in ACL2 using encapsulation.

For a specific set of concrete definitions of step , pre , post , etc., we can
translate proofs from one strategy to another by functional instantiation .
• I have a macro that can translate between strategies.

The macro can be used to go back and forth between strategies while d eveloping
correctness proofs of a large system.
• A component can be verified with that strategy that is best suited for it.
• Potentially useful in developing generic verification frameworks.
• I have occasionally wanted this while doing cutpoint proofs.

However, I have never used the translation in practice yet.
• This work was principally a result of curiosity.

UNIVERSITY OF TEXAS AT AUSTIN 29

DEPARTMENT OF COMPUTER SCIENCES

Conclusions

We proved that the three strategies are logically equivalent in spite of
differences, and each is in fact complete.
• At least in a logic allowing recursive definitions and quantification.

Perhaps indicates that the complexity in program verification does not
arise from the proof strategy used but rather the inherent complexity
involved in reasoning about correctness of code.
• Maybe an automation breakthrough will also carry over among strategies?

The immediate takeaway message is perhaps that it is very useful
sometimes to reason about and think in terms of quantification,
especially when developing generic techniques and strateg ies.

UNIVERSITY OF TEXAS AT AUSTIN 30

DEPARTMENT OF COMPUTER SCIENCES

Acknowledgements

Thank You!

Special Thanks To:

• Jeff Golden for significant early discussions that clarified my
understanding of operational semantics and program correctness.

• Matt Kaufmann for many discussions on ACL2 logic and quantifiers,
and in particular for a comment made during a presentation of some
preliminary results in 2004, that started me on track for the
completeness results in the first place.

UNIVERSITY OF TEXAS AT AUSTIN 31

