
  

Orc in ACL2

Chad Wellington
9/05/2007



  

Orc, in general

● Assumptions
– Distributed

– “Workflow”

– “Formal” Specification

● Composition
– Sites

– Combinators



  

Intuition, briefly

● Sites a form of Remote Procedure Call
– publishes 0 or 1 times

● Connectives
– bar : “f | g”

● simultaneous, non-communicating parallel

– pipe : “f >x> g”
● sequential creation of g's on f's publications
● analogy to dataflow, Unix pipe

– where : “f where x<-g” or more recently “f<x<g”
● parallel execution with binding and termination
● fork-join parallelism



  

Operational Semantics

● Formalize program meaning
– analogy to eval (?)

– as transitions, not final result

● State transition definitions
– conditional clauses (like Horn clauses)

– can form chain (or tree)

– here, labeled



  

Site definition

● actuals
– x :: unbound vbl

– v :: bound vbl / value

● Sites
– M(x) :: blocked

– M(v) :: unblocked

– k :: unique handle

– 0 :: silent

– let(x) :: publication



  

Life cycle of a site

M(x) ->* M(v) -> ?k -> let(v) -> 0



  

Publication rules

● “tau” is an internal event
● [v/x].g = all free occurrences of x in g replaced 

by v (relaxed to all occurrences since we can 
rename variables)



  

Transition passing rules

● Upper half pass any 
transition

● Lower half exempt 
publications



  

&c.

● structure forces a sequence, not a tree
– identifiable sequence of steps = “execution”

– eliminate tau's = “trace”
● note origin of tau's

● I make convenient (necessary?) assumptions
– round-based execution

– currently model semantic steps of tau transitions
● others execute in separate segment of the round, need 

different treatment

● Code on web, documentation available but 
shaky


