Orc in ACL2

Chad Wellington
9/05/2007

Orc, in general

* Assumptions Composition
— Distributed - Sites
- "Workflow” — Combinators

- “Formal” Specification

Intuition, briefly

e Sites a form of Remote Procedure Call
— publishes 0 or 1 times

e Connectives
- bar:*f| g’

e simultaneous, non-communicating parallel

- pipe : "t >x>¢g”
e sequential creation of g's on f's publications
 analogy to dataflow, Unix pipe

- where : “f where x<-g” or more recently “f<x<g”

» parallel execution with binding and termination
» fork-join parallelism

Operational Semantics

 Formalize program meaning
- analogy to eval (?)
- as transitions, not final result
» State transition definitions

— conditional clauses (like Horn clauses)
— can form chain (or tree)
- here, labeled

Site definition

e actuals
k fresh 1
—— (SITECALL) — X ;2 unbound vbl
"'Il!rl'ar'J M, (v) 21
T ‘ - v :: bound vbl / value
, ¢ Sites
7% let(v) (SITERET)
- M(x) :: blocked
let(v)) (LET) - M(v) :: unblocked

- Kk :: unique handle
- 0 :: silent
- let(x) :: publication

Life cycle of a site

M(x) ->* M(v) -> ?k -> let(v) -> 0

Publication rules

21

fors 9 = ([25 9) | [v/2].9

(SEQLV]

g — g

fwherer:cg — [v/z].f

)

(ASYM1V)

e “tau” Is an internal event

 [v/x].g = all free occurrences of x in g replaced
by v (relaxed to all occurrences since we can
rename variables)

Transition passing rules

J ”' j.; (SYM1) [

fla = f'lg _ (ASYMIN)
fwherer:€ g — f wherer:€ g

d ”' '{‘II ; (SYM2)

flg = flg
» Upper half pass any
transition
e a7t (Asvu2) © Lower half exempt
f wherez:€ g — fwherez:€ ¢ publications
. ”:. o]|
f] a7 N (SEQIN)

fr>g > [s> 9

&C.

e structure forces a sequence, not a tree

— identifiable sequence of steps = “execution”
- eliminate tau's = “trace”

* note origin of tau's
* | make convenient (necessary?) assumptions

— round-based execution

- currently model semantic steps of tau transitions

 others execute in separate segment of the round, need
different treatment

« Code on web, documentation available but
shaky

