Orc in ACL2

Chad Wellington 9/05/2007

Orc, in general

- Assumptions
 - Distributed
 - "Workflow"
 - "Formal" Specification

- Composition
 - Sites
 - Combinators

Intuition, briefly

- Sites a form of Remote Procedure Call
 - publishes 0 or 1 times
- Connectives
 - bar : "f | g"
 - simultaneous, non-communicating parallel
 - pipe : "f >x> g"
 - sequential creation of g's on f's publications
 - analogy to dataflow, Unix pipe
 - where : "f where x<-g" or more recently "f<x<g"</p>
 - parallel execution with binding and termination
 - fork-join parallelism

Operational Semantics

- Formalize program meaning
 - analogy to eval (?)
 - as transitions, not final result
- State transition definitions
 - conditional clauses (like Horn clauses)
 - can form chain (or tree)
 - here, labeled

Site definition

$$\frac{k \text{ fresh}}{M(v) \stackrel{M_k(v)}{\to} ?k} (\text{SITECALL})$$

$$?k \xrightarrow{k?v} let(v)$$
 (SiteRet)

$$let(v) \xrightarrow{!v} \mathbf{0}$$
 (Let)

- actuals
 - x :: unbound vbl
 - v :: bound vbl / value
- Sites
 - M(x) :: blocked
 - M(v) :: unblocked
 - k :: unique handle
 - 0 :: silent
 - let(x) :: publication

Life cycle of a site

 $M(x) \rightarrow M(v) \rightarrow ?k \rightarrow let(v) \rightarrow 0$

Publication rules

$$\frac{f \stackrel{!v}{\to} f'}{f > x > g \stackrel{\tau}{\to} (f' > x > g) \mid [v/x].g}$$
(SEQ1V)
$$\frac{g \stackrel{!v}{\to} g'}{f \text{ where } x :\in g \stackrel{\tau}{\to} [v/x].f}$$
(ASYM1V)

- "tau" is an internal event
- [v/x].g = all free occurrences of x in g replaced by v (relaxed to all occurrences since we can rename variables)

&c.

- structure forces a sequence, not a tree
 - identifiable sequence of steps = "execution"
 - eliminate tau's = "trace"
 - note origin of tau's
- I make convenient (necessary?) assumptions
 - round-based execution
 - currently model semantic steps of tau transitions
 - others execute in separate segment of the round, need different treatment
- Code on web, documentation available but shaky