# Introduction to Rippling 

John Erickson<br>Dept. of Computer Science<br>University of Texas at Austin

October 10, 2007

## Outline

- What is Rippling?
- Rippling-Out
- Rippling-In
- Rippling-Sideways
- Rippling-Across
- Conclusions


## What is Rippling?

- A way to control rewriting during induction
- Based on "rippling-out" the differences between the IH and IC
- Extended to achieve other rewriting goals
- Uses annotated rewrite rules to guide rewriting and ensure termination


## Rippling-Out

- $\mathrm{IH} x+(y+z)=(x+y)+z$
- IC $s(\underline{x})+(y+z)=(\boxed{s(\underline{x})}+y)+z$
- $s(\ldots)$ is a wave-front
- $x$ is a wave-hole
- $x+(y+z)=(x+y)+z$ is the skeleton


## Wave Rules

- General Form: $\eta(\underline{\xi(\underline{\mu})}) \rightarrow \zeta(\underline{\eta(\mu)})$
- $s(\underline{U})+V \rightarrow s(\underline{U+V})$
- $s(\underline{U}) \times V \rightarrow \underline{U \times V+V}$
- even $(s(s(\underline{U}))) \rightarrow \operatorname{even}(U)$
- $U+(\underline{V+W}) \rightarrow(\underline{U+V})+W$
- $(U+\underline{V})+W \rightarrow U+(\underline{V+W})$


## Rippling-Out Example

- $\mathrm{IH} x+(y+z)=(x+y)+z$
- IC $s(\underline{x})+(y+z)=(s(\underline{x})+y)+z$
- $s(\underline{x+(y+z))}=s(\underline{x+y})+z$
- $s(\underline{x+(y+z)})=s(\underline{(x+y)+z)}$


## Rippling-In

- Useful for when one side of an equality is missing a wave rule
- IH half $(x+x)=x$
- IC half $(\underline{s(\underline{x})}+s(\underline{x}))=s(\underline{x})$
- $\operatorname{half}(\underline{s(\underline{x+\boxed{s}(\underline{x})})})=\underline{s(\underline{x})}$
- Missing: $U+s(\underline{V}) \rightarrow s(\underline{U+V})$
- XF half $(s(x+s(x)))=s(\underline{\text { half }(x+x)})$
- $\operatorname{half}(s(x+s(x)))=\operatorname{half}\left({ }_{s(s(\underline{x+x}))}\right)$
- $x+s(x)=s(x+x)$


## Rippling-Sideways

- Unmeasured (free) induction variables can be used as "sinks"
- Rippling-sideways Attempts to ripple wave-front into a sink
- General form: $\eta\left(\underline{\xi(\underline{\mu})}^{\uparrow}, \nu\right) \rightarrow \eta\left(\mu, \zeta(\underline{n u})^{\downarrow}\right)$
- IH $\operatorname{rev}(I)<>M=\operatorname{qrev}(I, M)$

- $\operatorname{rev}\left({\underline{h:: \underline{I}^{\uparrow}}}^{\uparrow}\right)<>\lfloor m\rfloor=\operatorname{qrev}\left(I,\left\lfloor{\left.\left.\underline{h:: \underline{m}}{ }^{\downarrow}\right\rfloor\right)}\right.\right.$
- $\left.\underline{\underline{\operatorname{rev}(I)}<>(h:: n i l)}{ }^{\uparrow}\right)<>\lfloor m\rfloor=\operatorname{qrev}\left(I,\left\lfloor{\left.\left.\underline{h:: \underline{m}}{ }^{\downarrow}\right\rfloor\right), ~\left(\underline{m}^{\downarrow} \mid\right.}\right.\right.$



## Rippling-Across

- Adapts rippling to destructor inductions
- $U+V=$ if $U=0$ then $V$ else $s(p(U)+V)$
- Creational Rule: $U \neq 0 \Longrightarrow U+V \rightarrow s\left(\underline{p(\underline{U})}^{-}+V\right)$
- $\underline{p(\underline{x}})^{\uparrow}+(y+z)=\left(\underline{p(\underline{x})}^{\uparrow}+y\right)+z \vdash x+(y+z)=(x+y)+z$
- $\left.p^{p(\underline{x})}{ }^{\uparrow}+(y+z)=(\underline{p(\underline{x}})^{\uparrow}+y\right)+z \vdash$
$s\left(\underline{\underline{p(\underline{x})}}{ }^{-}+(y+z)\right)=s\left(\underline{\underline{p(\underline{x}})}^{-}+y\right)+z$
- $p(\underline{x})+(y+z)=(p(\underline{x})+y)+z \vdash s^{s(\underline{p(\underline{x})+(y+z)})}{ }^{\uparrow}=$

$$
s\left(\underline{p(\underline{x})+y}{ }^{\uparrow}+z\right.
$$

## Conclusions

- Pros: Terminating rewrites, ability to use rules right to left, goal directed
- Cons: A little bit complicated
- Doesn't address generalization, lemma generation, or choosing induction scheme
- Some techniques address these problems by asking "how can I make this choice so that rippling will be facilitated?"
- Formalizes informal strategies for rewriting

