
Introduction to Rippling

John Erickson
Dept. of Computer Science
University of Texas at Austin

October 10, 2007

Outline

I What is Rippling?
I Rippling-Out
I Rippling-In
I Rippling-Sideways
I Rippling-Across
I Conclusions

What is Rippling?

I A way to control rewriting during induction
I Based on “rippling-out” the differences between the IH and

IC
I Extended to achieve other rewriting goals
I Uses annotated rewrite rules to guide rewriting and ensure

termination

Rippling-Out

I IH x + (y + z) = (x + y) + z

I IC s(x) + (y + z) = (s(x) + y) + z

I s(...) is a wave-front
I x is a wave-hole
I x + (y + z) = (x + y) + z is the skeleton

Wave Rules

I General Form: η(ξ(µ))→ ζ(η(µ))

I s(U) + V → s(U + V)

I s(U) × V → U × V + V

I even(s(s(U)))→ even(U)

I U + (V + W)→ (U + V) + W

I (U + V) + W → U + (V + W)

Rippling-Out Example

I IH x + (y + z) = (x + y) + z

I IC s(x) + (y + z) = (s(x) + y) + z

I s(x + (y + z)) = s(x + y) + z

I s(x + (y + z)) = s((x + y) + z)

Rippling-In

I Useful for when one side of an equality is missing a wave
rule

I IH half (x + x) = x

I IC half (s(x) + s(x)) = s(x)

I half (s(x + s(x))) = s(x)

I Missing: U + s(V) → s(U + V)

I XF half (s(x + s(x))) = s(half (x + x))
↓

I half (s(x + s(x))) = half (s(s(x + x))
↓
)

I x + s(x) = s(x + x)

Rippling-Sideways

I Unmeasured (free) induction variables can be used as
“sinks”

I Rippling-sideways Attempts to ripple wave-front into a sink

I General form: η(ξ(µ)
↑
, ν)→ η(µ, ζ(nu)

↓
)

I IH rev(l) <> M = qrev(l ,M)

I IC rev(h :: l
↑
) <> bmc = qrev(h :: l

↑
, bmc)

I rev(h :: l
↑
) <> bmc = qrev(l ,

⌊
h :: m

↓
⌋
)

I rev(l) <> (h :: nil)
↑
) <> bmc = qrev(l ,

⌊
h :: m

↓
⌋
)

I rev(l) <> (

⌊
(h :: nil) <> m

↓
⌋
) = qrev(l ,

⌊
h :: m

↓
⌋
)

Rippling-Across

I Adapts rippling to destructor inductions
I U + V = if U = 0 then V else s(p(U) + V)

I Creational Rule: U 6= 0 =⇒ U + V → s(p(U)
−

+ V)

↑

I p(x)
↑
+(y+z) = (p(x)

↑
+y)+z ` x+(y+z) = (x+y)+z

I p(x)
↑

+ (y + z) = (p(x)
↑

+ y) + z `

s(p(x)
−

+ (y + z))

↑

= s(p(x)
−

+ y)

↑

+ z

I p(x) + (y + z) = (p(x) + y) + z ` s(p(x) + (y + z))
↑

=

s(p(x) + y)
↑

+ z

Conclusions

I Pros: Terminating rewrites, ability to use rules right to left,
goal directed

I Cons: A little bit complicated
I Doesn’t address generalization, lemma generation, or

choosing induction scheme
I Some techniques address these problems by asking “how

can I make this choice so that rippling will be facilitated?”
I Formalizes informal strategies for rewriting

