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Problem

Given:

I Verilog RTL for the Centaur CN processor’s FADD unit,

I Opcode and instructions for running a floating-point addition,

I An ACL2 specification function for floating point addition,

Prove, to the extent possible, that the design implements the spec.
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Spec side

Spec to BDDs
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Spec side

Gify quick summary

I Want the spec represented as BDDs - Boolean functions, one for each
output bit, over the bits of the input

I (GIFY ’SPEC) defines the (Common Lisp) function G-SPEC which
now operates on symbolic objects.

I Approximate, hypothetical contract of a G-function:

(equal (eval-g (g-foo a b c) vals)
(foo (eval-g a vals)

(eval-g b vals)
(eval-g c vals)))

where EVAL-G maps a symbolic object to a concrete object.
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Input BDD Generation

Input BDD Generation

ACL2 
Spec 

Function

Model 
Output 
BDDs

G-spec
Spec 

Output 
BDDs

Case-splitting 
predicate =?

Input 
BDDs

Dependency 
Checking

Functional 
Simulation

Delay Modeling

And-Inverter 
GraphsEMOD

GIFY

Verilog 
Files

BDDify
E 

Modules

Sol Swords () Verifying Centaur’s Floating Point Adder April 23, 2008 6 / 21



Input BDD Generation

Case Splitting

I BDDs for fully general FP addition are too big.
I We have built them for the single-precision case: 2-4 hours

computation, 20 million hash-conses. Not happening for
double-precision.

I Case-splitting lets the BDD order be chosen for each case
I Also makes it easier to eliminate irrelevant intermediate computations

(more later.)

Where do we split?
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Input BDD Generation

Split by Exponent Difference

Mantissa 1

Mantissa 2Expt Diff

Why?

I Adding the same mantissas at the same exponent difference is the
same addition operation

I Best BDD order for addition has bits in order of significance

I Separates Near Path from Far Path cases

I Can consolidate cases where mantissas don’t overlap
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Input BDD Generation
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Input BDD Generation
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Input BDD Generation

Case-splitting Predicate

Define as an ACL2 function: (ops-ok op1 op2 case)

I case specifies which of the cases to accept

I Equals t if the operands fit that case, nil otherwise.

I Gify this function to get g-ops-ok

I Use the Gified function to get a BDD that shows when the symbolic
operands satisfy the predicate.
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Input BDD Generation

Parameterized Inputs

For the inputs to symbolic simulations we want symbolic values that

I Always satisfy the predicate

I Cover all possible inputs that satisfy the predicate.

Implemented by function (Q-PARAM P N)

I P - predicate BDD

I N - Number of variables to create parameterized values for
I (Q-PARAM P N) makes a list of N BDDs which

I evaluate to values satisfying P for all variable settings
I are general enough so that every set of values satisfying P can be

generated.
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Input BDD Generation

Q-PARAM theorems: 1

(defthm forall-y-p-of-param-of-y-is-true
(implies
(and (normp p) ;; P is a BDD

p ;; P is satisfiable
;; N is an integer
;; and is >= the number of variables used in P
(integerp n)
(<= (max-depth p) n))

;; Every case covered by (Q-PARAM P N) satisfies P.
(equal (eval-bdd p

(eval-bdd-list (q-param p n)
y))

t)))
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Input BDD Generation

Q-PARAM theorems: 2

(defthm exists-y-such-that-x-is-param-of-y
(implies
(and ;; X is a list of Booleans that satisfies P

(boolean-listp x)
(equal (eval-bdd p x) t)
;; X is long enough to cover all variables of P
(<= (max-depth p) (len x)))

;; There exists Y for which (Q-PARAM P (LEN X))
;; evaluates to X.
(let ((y (eval-bdd-list (q-param-inv p (len x)) x)))
(equal (eval-bdd-list (q-param p (len x))

y)
x))))
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Model Side

Model to BDDs
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Model Side

Model-side summary

I We read the model from Centaur’s Verilog RTL (about 20,000 LOC.)

I Synthesize the Verilog to gates and translate the gates to E

I Results in an ACL2 defconst called |*fadd*|

I Run several cycles of
(emod ’faig |*fadd*| < inputs > < state > )
to get a pair of And-Inverter Graphs (AIGs) for each output bit.

I Using the BDD inputs generated by case-splitting, build the BDD for
each AIG using an iterative process.
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Model Side

AIG introduction

An AIG is a recursive data structure:

I Booleans: T and NIL

I Variables: non-Boolean atoms

I Negation of an AIG x : (CONS X NIL)

I Conjunction of AIGs x and y : (CONS X Y)
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Model Side

AIG to BDD, simple algorithm

Given an assignment of BDDs to the variables present in an AIG, make an
equivalent BDD:

(defn aig-to-bdd (x al)
(cond ((booleanp x) ;; Boolean

x)
((atom x) ;; Variable
(cdr (hons-get x al)))
((eq (cdr x) nil) ;; Negation
(q-not (aig-to-bdd (car x) al)))
(t ;; Conjunction
(q-and (aig-to-bdd (car x) al)

(aig-to-bdd (cdr x) al)))))

I Too inefficient, can’t use.
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Model Side

AIG to BDD, practical approach

At a conjunction node A ∧ B, suppose A can be cheaply translated into a
BDD but B cannot.
Observation: We may not need to BDDify B in order to BDDify A ∧ B.

I If BDDify(A) = NIL, then BDDify(A ∧ B) = NIL.

I More generally, if A is never true when B is false, then
BDDify(A ∧ B) = BDDify(A).

I Strategy: Set an upper bound on the size of BDDs to work on. If we
can detect the above situation before fully BDDifying B, we win.
Otherwise, may need to increase the upper bound and try again.
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Model Side

AIG to BDD, practical approach

I Use one of two strategies for dealing with too-big BDDs:
I More conservative, faster: Use pairs of BDDs to represent upper and

lower bounds of the true BDD values. Set the upper bound to T or the
lower bound to NIL when too big.

I Less conservative, slower: Associate each too-large BDD created with a
fresh BDD variable.

I In either case, we may sometimes prune the AIG even when we have
no exact BDD results.

I Have ACL2 proofs that both approaches are sound.

I Our approach: Alternate between the two strategies while iteratively
increasing the size limit until an exact result is reached.
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Results

Results

I Works pretty well:
I Single-precision: 8 minutes to verify
I Double/extended precision: 1 hour each

I Future directions:
I Fight our way toward an ACL2 theorem.

I Prove that we really have a proof.
I Need a logical story for Gification.

I Adapt the approach to other kinds of hardware.
I Need to decompose the problem in other ways than by case-splitting on

the inputs.
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