
Basics of SAT Solving Algorithms

Sol Swords

December 8, 2008

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 1 / 24

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 2 / 24

Vocabulary and Preliminaries

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 3 / 24

Vocabulary and Preliminaries

What is a SAT problem?

Given a propositional formula (Boolean variables with AND, OR, NOT), is there
an assignment to the variables such that the formula evaluates to true?

I NP-complete problem with applications in AI, formal methods

I Input usually given as Conjunctive Normal Form formulas - linear reduction
from general propositional formulas

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 4 / 24

Vocabulary and Preliminaries

Conjunctive Normal Form

SAT solvers usually take input in CNF: an AND of ORs of literals.

I Atom - a propositional variable: a, b, c

I Literal - an atom or its negation: a, ā, b, b̄

I Clause - A disjunction of some literals: a ∨ b̄ ∨ c

I CNF formula - A conjunction of some clauses: (a ∨ b̄ ∨ c) ∧ (c̄ ∨ ā)

A formula is satisfied by a variable assignment if every clause has at least one
literal which is true under that assignment.
A formula is unsatisfied by a variable assignment if some clause’s literals are all
false under that assignment.

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 5 / 24

Basic Algorithm

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 6 / 24

Basic Algorithm

The Bare Gist of DPLL-based SAT algorithms

I Perform a depth-first search through the space of possible variable
assignments. Stop when a satisfying assignment is found or all possibilities
have been tried.

a a-

b b
-

c c-

Many optimizations possible:

I Skip branches where no satisfying assignments can occur.

I Order the search to maximize the amount of the search space that can be
skipped.

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 7 / 24

Basic Algorithm

Slightly More Detailed Sketch

Repeat:

I Decide: Select some unassigned variable and assign it a value.
I If all variables are assigned, return SAT.

I Deduce: Infer values of other variables that follow from that assignment and
detect conflicts.

I Resolve: In case of conflict, record a new clause prohibiting that conflict;
undo the assignments leading to the conflict.

I If it’s a top-level conflict (the conflict clause is empty), return UNSAT.

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 8 / 24

Basic Algorithm

Deduce

Conflict?Resolve

Decide

Yes No

Pick unassigned variable
and assign a value

Infer assignments by
Boolean constraint
propagation

Done?

Top-level
conflict?

No

No

UNSAT

SAT

Add conflict clause,
rewind assignments Yes

Yes

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 9 / 24

Basic Algorithm

Ways to make DPLL Faster

I Decide: Use a good heuristic to select among unassigned variables
I activity heuristic based on how often a variable is involved in a conflict

I Deduce: Use a good trade-off between speed and completeness
I Boolean constraint propagation with watched literals
I Typically about 80% of SAT-solver runtime

I Resolve: Take advantage of information revealed by conflicts without
over-growing the clause set

I Learn one or more new clauses at each conflict
I Backtrack to the ”root cause” of the conflict
I Delete conflict clauses based on an activity heuristic to keep the working set

small

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 10 / 24

Boolean Constraint Propagation

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 11 / 24

Boolean Constraint Propagation

Boolean Constraint Propagation

Two simple rules:

I If all but one of a clause’s literals are assigned FALSE and the remaining
literal is unassigned, assign it TRUE.

I If all of a clause’s literals are assigned FALSE, return UNSAT.

Naive algorithm: Inspect each clause and apply the rule; repeat until no new
assignments are made.

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 12 / 24

Boolean Constraint Propagation

Motivation for watched literal method

Ideal BCP: Each clause is inspected only after all but one literal is assigned false.

I Nothing is accomplished by inspecting a clause when it is satisfied or when
multiple literals are unassigned.

Best known way to approximate this ideal:

I Associate each clause with two of its unassigned literals

I Only examine the clause when one of them is assigned false.

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 13 / 24

Boolean Constraint Propagation

Watched Literal Algorithm

When a literal a is assigned true:

I For each clause k in the watch list of ā, do:
I If all but one literal b is assigned false, assign b true (and recur);
I If all literals are assigned false, exit (UNSAT);
I If any literal is assigned true, continue;
I Otherwise, add k to the watch list of one of its remaining unassigned literals

and remove it from the watch list of ā.

Notes:

I Low overhead, large reduction in number of clause inspections relative to
naive algorithms.

I Tricky to maintain all the right invariants so that backtracking doesn’t break
the watch lists.

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 14 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect,

I d̄ assigned: inspect,

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect,

I d̄ assigned: inspect,

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect,

I d̄ assigned: inspect,

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect, choose new watched literal d

I d̄ assigned: inspect,

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect, choose new watched literal d

I d̄ assigned: inspect,

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect, choose new watched literal d

I d̄ assigned: inspect, propagate a

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect, choose new watched literal d

I d̄ assigned: inspect, propagate a

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Boolean Constraint Propagation

Watched Literals Example

I Watched literals a, b̄, all literals unassigned

I c̄ assigned: don’t inspect

I b assigned: inspect, choose new watched literal d

I d̄ assigned: inspect, propagate a

I Backtrack to before b

I a assigned: don’t inspect

a b̄ c d

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 15 / 24

Conflict Analysis

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 16 / 24

Conflict Analysis

Conflict Analysis

Conflicts can be exploited to reduce the space to be searched.

Conflict

I Find a conflict (skip the subtree where it’s rooted)

I Analyze the conflict to find a sufficient condition

I Skip future areas of search space where the condition holds

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 17 / 24

Conflict Analysis

Conflict Analysis

Conflicts can be exploited to reduce the space to be searched.

Conflict Cause

I Find a conflict (skip the subtree where it’s rooted)

I Analyze the conflict to find a sufficient condition

I Skip future areas of search space where the condition holds

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 17 / 24

Conflict Analysis

Conflict Analysis

Conflicts can be exploited to reduce the space to be searched.

Conflict Cause Pruned Branches

I Find a conflict (skip the subtree where it’s rooted)

I Analyze the conflict to find a sufficient condition

I Skip future areas of search space where the condition holds

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 17 / 24

Conflict Analysis

Conflict Clauses

I To prune branches where a = false, b = true, c = true, add conflict clause
a b̄ c̄ .

I Pruning is implicit in BCP.

I Use learned clause to determine how far to backtrack.
I Backtrack to earliest decision level in which exactly one variable is unassigned.

I How to calculate this clause?

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 18 / 24

Conflict Analysis

Calculating a conflict clause

To analyze a clause c :

I For each false literal x in c , either
add x to the conflict clause or
analyze the clause c ′ which
propagated x̄ (heuristic decision.)

Picture: clause a d̄ ē g causes a
conflict, yielding conflict clause a b̄ c̄ .

I Can construct a resolution proof
of the new clause from this
process:

a d̄ ē g , ḡ d̄ c̄ ⇒ a d̄ ē c̄

a d̄ ē c̄ , a h̄ d ⇒ a ē c̄ h̄

a ē c̄ h̄, e h̄ c̄ ⇒ a c̄ h̄

a c̄ h̄, h b̄ ⇒ a b̄ c̄

a d e g
 - -

g d c
- - -

a h d
 -

b
-

h b
 -

c
-

e h c
 - -

a

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 19 / 24

Conflict Analysis

Conflict clause heuristics

Issue: Include a literal in the conflict clause, or explore the clause that caused its
assignment?

I No choice about decision literals

I Goal: Small, relevant conflict clauses
I Possible to generate more than one clause from a conflict, but most solvers

don’t

I Typical choice is “First UIP” (Unique Implication Point) strategy:
I Never explore causes of literals assigned due to previous decisions
I Generate the smallest clause that includes exactly one literal from the current

decision level

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 20 / 24

High-level Strategy

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 21 / 24

High-level Strategy

Ordering, Deletion, Restarting

Useful high-level strategic heuristics:

I Choose decision literals by activity heuristic: how often has a literal (recently)
been involved conflicts?

I Many tweaks possible
I Choose randomly some small percentage of the time

I Periodically delete some conflict clauses to keep the working set small
I Various heuristics: activity, size, number of currently-assigned literals
I A clause is “locked” (may not be deleted) if it is the reason for a current

assignment

I Periodically restart the search while keeping some learned clauses
I Try to avoid “dead ends” where heuristics are pushing in the wrong direction
I Most solvers increase limitations on backtracks and learned clauses at each

restart

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 22 / 24

Reading

Outline

Vocabulary and Preliminaries

Basic Algorithm

Boolean Constraint Propagation

Conflict Analysis

High-level Strategy

Reading

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 23 / 24

Reading

References

I Marques-Silva & Sakallah, GRASP: A search algorithm for propositional
satisfiability

I Moskewicz et al, Chaff: Engineering an efficient SAT solver

I Een & Sorensson, An extensible SAT-solver

I Zhang et al, Efficient conflict driven learning in a Boolean satisfiability solver

Sol Swords () Basics of SAT Solving Algorithms December 8, 2008 24 / 24

	Vocabulary and Preliminaries
	Basic Algorithm
	Boolean Constraint Propagation
	Conflict Analysis
	High-level Strategy
	Reading

