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Vocabulary and Preliminaries

What is the SMT problem?

SMT stands for Satisfiability Modulo Theories, and is essentially a generalization
of the SAT problem.
We say “modulo theories” because the Boolean predicates of SAT are now first
order sentences in a logic.

I At least NP-complete and at most unbounded complexity problem with
applications in AI, formal methods

I Input usually given in SMT-LIB format (CNF with sugar)
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Vocabulary and Preliminaries

Definitions

I A theory T is a set of first order sentences.

I A formula F is T -satisfiable or T -consistent if F ∧ T is satisfiable in the first
order sense. Otherwise F is T -inconsistent.

I A partial assignment M is a T -model of a formula F if M is a T -consistent
partial assignment and M |= F (in the propositional sense).

I For two formulas F and G , we say F |=T G if F ∧ ¬G is T -inconsistent.

I A theory lemma is a clause C such that ∅ |=T C .

I A T -solver is a decision∗ procedure that decides the T -satisfiability of
conjunctions of ground literals.
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Vocabulary and Preliminaries

A Brief Look at DPLL

Based on the idea of unit propagation:

M ‖ F ,C ∨ l ⇒ Ml ‖ F ,C ∨ l if

{
M |= ¬C
l is undefined in M

conflict-driven backjumping:

MldN ‖ F ,C ⇒ Ml ′ ‖ F ,C if


MldN |= ¬C and there is
some clause C ′ ∨ l ′ such that:

F ,C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M, and
l ′ or ¬l ′occurs in F or in MldN

and conflict-driven learning:

M ‖ F ⇒ M ‖ F ,C if

{
each atom of C occurs in F or in M
F |= C
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Previous Strategies Eager Approaches

Propositional Translation

Satisfiability-preserving translation to a propositional CNF formula.
Pros:

I Easy to do translations.

I Leverages the existant SAT-solving technology.

Cons:

I Not all theories can be translated this way.

I Translation causes exponential blow-up.

I Search starts only after entire problem is translated.

I Size of the problem usually consumes all resources before starting the search.
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Previous Strategies Eager Approaches

Calling External SAT Solver

The T -solver calls a SAT solver on the formula to get a (propositionally)
satisfying assignment and checks its T -consistency. If inconsistent, the conflicting
clause is added to the formula and sent back to the SAT solver.
Pros:

I Only have to write the T -solver.

I Again leverages the existant SAT-solving technology.

Cons:

I Search must complete entirely before T -inconsistency is reported.

I Search must start over at the beginning if last assignment failed.
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Previous Strategies Lazy Approaches

Incremental T -solving

Communicates with the DPLL module to inform of T -inconsistency before an
entire model is constructed, either at every decision or on every k decisions.
Pros:

I Early pruning of search space.

Cons:

I Not always effective. The T -solver should be faster in processing one
additional input literal than in reprocessing from scratch, but for some
theories this is impossible.

I Finding the “sweet spot”, or the right k for the best performance is guess
work.
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Previous Strategies Lazy Approaches

On-line SAT solving

Builds off the incremental approach by allowing the T -solver to generate
conflicting clauses to aid with backjumping.
Pros:

I Early pruning

I More aggressive pruning.

Cons:

I Conflicting clauses hard to generate.
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Previous Strategies Lazy Approaches

Theory Propagation

Guides the search process by taking the current partial assignment and deriving
other subterms of the formula. T -solver is no longer a validator for the DPLL
search.
Pros:

I Analagous to the importance of unit propagation in DPLL.

I For many theories, this process exhaustively executed gives a great increase
of performance.

I Exhaustively executed, this eliminates the need for unit propagation on theory
lemmas.

Cons:

I Conflict analysis highly non-trivial.

I If not performed exhaustively, duplicate results are extraneously generated.
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The DPLL(T) Framework

Transactions between DPLL and T-Solver

Sufficient communication for an incremental on-line solver with theory
propagation is given in the following set of messages:

I Notify T -Solver that a certain literal has been set to true.

I Ask T -Solver to check the current partial assignment is T -inconsistent (with
strength) and give an explanation.

I Ask T -Solver to identify currently undefined input literals that are
T -consequences of M.

I Ask T -Solver to provide a justification for a T -entailment of a
theory-propagated literal for conflict clause learning.

I Ask T -Solver to undo the last n notifications that a literal has been set to
true.
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Useful Theories

Equality of Uninterpreted Functions (EUF)

Finds basic unsatisfiable errors such as

(f (f (a)) 6= b ∨ f (f (f (b))) 6= b) ∧ f (a) = a ∧ a = b

by using a congruence closure algorithm to create congruence classes and
checking the results against a list of suspected equalities and disequalities,
inconsistencies are found.
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Useful Theories

Difference Logic

(Still NP-Complete) subset of integer linear arithmetic problems where all
constraints are of the form

x − y ≤ c

Questions in bounded model checking of timed automata along with questions of
circuit timing analysis can be answered with this logic. Näıvely solvable using an
iterative Bellman-Ford method, but better negative-weight cycle detection
algorithms are known.
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Useful Theories

Bit-Vectors

NP-Complete theory that allows fixed-width bit vectors to have the following
operators executed on them: Assignment =, named selection [i : j ], concatenation
::, arithmetic {+,−, ∗, <} where ∗ is multiplication by a scalar, and bitwise
operators {AND,OR,NOT}
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Useful Theories

Interpreted Sets and Bounded Quantification

An expressive NP-Complete theory of heap-manipulating loop-free and
procedure-free programs. Strategy for proving a program T correct: compute
wp(T , true) and decide satisfiability of ¬wp(T , true), giving ¬wp(T , true) is
unsatisfiable if and only if T does not go wrong.

T ∈ Stmt ::=Assert(ϕ) | Assume(ϕ) |
x := new | free(x) | x := t |
f (x) := y | T1; T2 | T1�T2

c ∈ Integer
x ∈ Variable
f ∈ Function
ϕ ∈ Formula ::= α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ
α ∈ ∀Formula ::= γ | α1 ∧ α2 | α1 ∧ α2 | ∀x ∈ S.α

γ ∈ GFormula ::= t1 = t2 | t1 < t2 | t1
f−→ t2

f−→ t3 | ¬γ
t ∈ Term ::= c | x | t1 − t2 | t1 + t2 | f (t) | ite(t = t′, t1, t2)
S ∈ Set ::= g−1(t) | Btwn(f , t1, t2)

Figure: Program statement syntax (top) and formula syntax (bottom)
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Combining Theories

Nelson-Oppen Method

A solver for the union of theories T1 and T2 can be constructed using the
Nelson-Oppen procedure if the two have disjoint signatures (Σ1 ∩ Σ2 = {=}) and
are stably infinite (i.e. every satisfiable quantifier-free formula is satisfiable in an
infinite model).
For Γ a set of literals of Σ1 ∪ Σ2, want to purify Γ into Γ1 ∧ Γ2 such that Γi ⊆ Σα

i

for α = {V(Γ1) ∩ V(Γ2)}. A partition φ (conjuction of many equalities and
disequalities) of α is guessed and the individual solvers return if Γi ∧ φ is
satisfiable.
A theory is convex iff for for all finite sets Γ of literals and for all non-empty
disjunctions

∨
i∈I ui ' vi of variables, Γ |=T

∨
i∈I ui ' vi iff Γ |=T ui ' vi for some

i ∈ I .
If the two theories are convex, then this guessing can be changed into deducing
the correct partition by propagating equalities (let Γ2 know if T1 ∪ Γ1 |= x ' y
and vice versa).
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Combining Theories

Model-Based Method

(i) Each theory Ti maintains a model Mi for Γi (or a subset of Γi ).
(ii) Sometimes if uMi = vMi then a case split is introduced for u ' v .
(iii) To satisfy newly assigned literals or te imply fewer equalities, models can be
changed.
Rules added to SMT:

M-Propagate: M, Γ ‖ F ⇒M, Γ(u ' v)d ‖ F if

 u, v ∈ V, (u ' v) /∈ L
uMi = vMi

add (u ' v) to L
M-Mutate: M, Γ ‖ F ⇒M′, Γ ‖ F if {M′ is some variant of M .
To minimize case splits, equivalence classes are kept for an equivalence relation
RM(u, v) ⇐⇒ uM = vM.
(i) “Opportunistic equality propagation”: eagerly propagate equality deductions.
(ii) “Postponing model-based equality propagation”: delay applying the rule
M-Propagate until all existing case splits have been performed.
(iii) For a mutated model, create a more diverse model δ(Mk), such that
|classes(RMk

)| ≤ |classes(Rδ(Mk ))|.
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