Basics of SMT Solving Algorithms and Theories

lan Johnson

April 29, 2009

Ian Johnson ()

Basics of SMT Solving Algorithms and Theories

April 29, 2009 1 / 24

Vocabulary and Preliminaries

Previous Strategies Eager Approaches

Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Vocabulary and Preliminaries

Previous Strategies Eager Approaches Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

э

・ロト ・日 ・ ・ ヨ ・ ・

What is the SMT problem?

- SMT stands for Satisfiability Modulo Theories, and is essentially a generalization of the SAT problem.
- We say "modulo theories" because the Boolean predicates of SAT are now first order sentences in a logic.
 - ► At least NP-complete and at most unbounded complexity problem with applications in AI, formal methods
 - Input usually given in SMT-LIB format (CNF with sugar)

Definitions

- ► A theory *T* is a set of first order sentences.
- A formula F is T-satisfiable or T-consistent if F ∧ T is satisfiable in the first order sense. Otherwise F is T-inconsistent.
- A partial assignment M is a T-model of a formula F if M is a T-consistent partial assignment and M ⊨ F (in the propositional sense).
- ▶ For two formulas *F* and *G*, we say $F \models_T G$ if $F \land \neg G$ is *T*-inconsistent.
- A theory lemma is a clause C such that $\emptyset \models_T C$.
- A *T*-solver is a decision^{*} procedure that decides the *T*-satisfiability of conjunctions of ground literals.

A Brief Look at DPLL

Based on the idea of unit propagation: $M \parallel F, C \lor I \Rightarrow MI \parallel F, C \lor I \text{ if } \begin{cases} M \models \neg C \\ I \text{ is undefined in } M \end{cases}$ conflict-driven backjumping: $MI^{d}N \parallel F, C \Rightarrow MI' \parallel F, C \text{ if } \begin{cases} MI^{d}N \models \neg C \text{ and there is} \\ \text{some clause } C' \lor I' \text{ such that:} \\ F, C \models C' \lor I' \text{ and } M \models \neg C', \\ I' \text{ is undefined in } M, \text{ and} \\ I' \text{ or } \neg I' \text{occurs in } F \text{ or in } MI^{d}N \end{cases}$ and conflict-driven learning: $M \parallel F \Rightarrow M \parallel F, C \text{ if } \begin{cases} \text{ each atom of } C \text{ occurs in } F \text{ or in } M \\ F \models C \end{cases}$

《曰》《聞》《臣》《臣》

Vocabulary and Preliminaries

Previous Strategies Eager Approaches Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ .

Propositional Translation

Satisfiability-preserving translation to a propositional CNF formula. Pros:

- Easy to do translations.
- Leverages the existant SAT-solving technology.

Cons:

- Not all theories can be translated this way.
- ► Translation causes exponential blow-up.
- Search starts only after entire problem is translated.
- ► Size of the problem usually consumes all resources before starting the search.

< □ ▶ < 🗇 ▶

Calling External SAT Solver

The T-solver calls a SAT solver on the formula to get a (propositionally) satisfying assignment and checks its T-consistency. If inconsistent, the conflicting clause is added to the formula and sent back to the SAT solver. Pros:

- Only have to write the *T*-solver.
- Again leverages the existant SAT-solving technology.

Cons:

- ► Search must complete entirely before *T*-inconsistency is reported.
- Search must start over at the beginning if last assignment failed.

Incremental *T*-solving

Communicates with the DPLL module to inform of T-inconsistency before an entire model is constructed, either at every decision or on every k decisions. Pros:

• Early pruning of search space.

Cons:

- ▶ Not always effective. The *T*-solver should be faster in processing one additional input literal than in reprocessing from scratch, but for some theories this is impossible.
- ▶ Finding the "sweet spot", or the right *k* for the best performance is guess work.

Image: A matrix and a matrix

On-line SAT solving

Builds off the incremental approach by allowing the T-solver to generate conflicting clauses to aid with backjumping. Pros:

- Early pruning
- More aggressive pruning.

Cons:

Conflicting clauses hard to generate.

Image: A matrix and a matrix

Guides the search process by taking the current partial assignment and deriving other subterms of the formula. *T*-solver is no longer a *validator* for the DPLL search.

Pros:

- ► Analagous to the importance of unit propagation in DPLL.
- For many theories, this process exhaustively executed gives a great increase of performance.
- Exhaustively executed, this eliminates the need for unit propagation on theory lemmas.

Cons:

- Conflict analysis highly non-trivial.
- ▶ If not performed exhaustively, duplicate results are extraneously generated.

Vocabulary and Preliminaries

Previous Strategies Eager Approaches Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

・ロト ・日 ・ ・ ヨ ・ ・

Transactions between DPLL and T-Solver

Sufficient communication for an incremental on-line solver with theory propagation is given in the following set of messages:

- ▶ Notify *T*-Solver that a certain literal has been set to true.
- ► Ask *T*-Solver to check the current partial assignment is *T*-inconsistent (with *strength*) and give an *explanation*.
- ► Ask *T*-Solver to identify currently undefined input literals that are *T*-consequences of *M*.
- Ask *T*-Solver to provide a justification for a *T*-entailment of a theory-propagated literal for conflict clause learning.
- ► Ask *T*-Solver to undo the last *n* notifications that a literal has been set to true.

< □ > < 同 > < 三 >

Vocabulary and Preliminaries

Previous Strategies Eager Approaches Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

▲□▶ ▲□▶ ▲ □▶ ▲

Equality of Uninterpreted Functions (EUF)

Finds basic unsatisfiable errors such as

$$(f(f(a)) \neq b \lor f(f(f(b))) \neq b) \land f(a) = a \land a = b$$

by using a congruence closure algorithm to create congruence classes and checking the results against a list of suspected equalities and disequalities, inconsistencies are found.

< □ > < 同 >

(Still NP-Complete) subset of integer linear arithmetic problems where all constraints are of the form

 $x - y \leq c$

Questions in bounded model checking of timed automata along with questions of circuit timing analysis can be answered with this logic. Naïvely solvable using an iterative Bellman-Ford method, but better negative-weight cycle detection algorithms are known.

< □ > < 同 > < 回 > < .

NP-Complete theory that allows fixed-width bit vectors to have the following operators executed on them: Assignment =, named selection [i : j], concatenation ::, arithmetic $\{+, -, *, <\}$ where * is multiplication by a scalar, and bitwise operators $\{AND, OR, NOT\}$

Image: A matrix and a matrix

Useful Theories

Interpreted Sets and Bounded Quantification

An expressive NP-Complete theory of heap-manipulating loop-free and procedure-free programs. Strategy for proving a program T correct: compute wp(T, true) and decide satisfiability of $\neg wp(T, true)$, giving $\neg wp(T, true)$ is unsatisfiable if and only if T does not go wrong.

$$T \in Stmt ::= Assert(\varphi) \mid Assume(\varphi) \mid$$
$$x := new \mid free(x) \mid x := t \mid$$
$$f(x) := y \mid T_1; T_2 \mid T_1 \Box T_2$$

$$\begin{array}{lll} c & \in \mbox{Integer} \\ x & \in \mbox{Variable} \\ f & \in \mbox{Function} \\ \varphi & \in \mbox{Formula} & ::= \alpha \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \\ \alpha & \in \mbox{VFormula} & ::= \gamma \mid \alpha_1 \land \alpha_2 \mid \alpha_1 \land \alpha_2 \mid \forall x \in S.\alpha \\ \gamma & \in \mbox{GFormula} & ::= t_1 = t_2 \mid t_1 < t_2 \mid t_1 \xrightarrow{f} t_2 \xrightarrow{f} t_3 \mid \neg \gamma \\ t & \in \mbox{Term} & ::= c \mid x \mid t_1 - t_2 \mid t_1 + t_2 \mid f(t) \mid ite(t = t', t_1, t_2) \\ S & \in \mbox{Set} & ::= g^{-1}(t) \mid Btwn(f, t_1, t_2) \end{array}$$

Figure: Program statement syntax (top) and formula syntax (bottom)

・ロッ ・ 一 ・ ・ ・ ・

Vocabulary and Preliminaries

Previous Strategies Eager Approaches Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

・ロト ・日 ・ ・ ヨ ・ ・

A solver for the union of theories T_1 and T_2 can be constructed using the Nelson-Oppen procedure if the two have disjoint signatures ($\Sigma_1 \cap \Sigma_2 = \{=\}$) and are stably infinite (i.e. every satisfiable quantifier-free formula is satisfiable in an infinite model).

For Γ a set of literals of $\Sigma_1 \cup \Sigma_2$, want to *purify* Γ into $\Gamma_1 \wedge \Gamma_2$ such that $\Gamma_i \subseteq \Sigma_i^{\alpha}$ for $\alpha = \{\mathcal{V}(\Gamma_1) \cap \mathcal{V}(\Gamma_2)\}$. A partition ϕ (conjuction of many equalities and disequalities) of α is guessed and the individual solvers return if $\Gamma_i \wedge \phi$ is satisfiable.

A theory is *convex* iff for for all finite sets Γ of literals and for all non-empty disjunctions $\bigvee_{i \in I} u_i \simeq v_i$ of variables, $\Gamma \models_T \bigvee_{i \in I} u_i \simeq v_i$ iff $\Gamma \models_T u_i \simeq v_i$ for some $i \in I$.

If the two theories are convex, then this guessing can be changed into deducing the correct partition by propagating equalities (let Γ_2 know if $T_1 \cup \Gamma_1 \models x \simeq y$ and vice versa).

<ロ> <問> <問> < 回> < 回>

Model-Based Method

(i) Each theory \mathcal{T}_i maintains a model \mathcal{M}_i for Γ_i (or a subset of Γ_i). (ii) Sometimes if $u^{\mathcal{M}_i} = v^{\mathcal{M}_i}$ then a case split is introduced for $u \simeq v$. (iii) To satisfy newly assigned literals or te imply fewer equalities, models can be changed.

Rules added to SMT:

$$\mathcal{M}\text{-Propagate: } \mathcal{M}, \Gamma \parallel F \Rightarrow \mathcal{M}, \Gamma(u \simeq v)^d \parallel F \text{ if } \begin{cases} u, v \in \mathcal{V}, (u \simeq v) \notin \mathcal{L} \\ u^{\mathcal{M}_i} = v^{\mathcal{M}_i} \\ \text{add } (u \simeq v) \text{ to } \mathcal{L} \end{cases}$$

 \mathcal{M} -Mutate: $\mathcal{M}, \Gamma \parallel F \Rightarrow \mathcal{M}', \Gamma \parallel F$ if $\{\mathcal{M}' \text{ is some variant of } \mathcal{M}.$

To minimize case splits, equivalence classes are kept for an equivalence relation $R_{\mathcal{M}}(u, v) \iff u^{\mathcal{M}} = v^{\mathcal{M}}$.

(i) "Opportunistic equality propagation": eagerly propagate equality deductions. (ii) "Postponing model-based equality propagation": delay applying the rule \mathcal{M} -Propagate until all existing case splits have been performed. (iii) For a mutated model, create a more *diverse* model $\delta(\mathcal{M}_k)$, such that

 $|classes(R_{\mathcal{M}_k})| \leq |classes(R_{\delta(\mathcal{M}_k)})|.$

Vocabulary and Preliminaries

Previous Strategies Eager Approaches Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

▲□▶ ▲□▶ ▲ □▶ ▲

- R. Nieuwenhuis and A. Oliveras: Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T)
- R. Bruttomesso et al: A Lazy and Layered SMT(BV) Solver for Hard Industrial Verification Problems
- S. Lahiri and S. Qadeer: Back to the Future: Revisiting Precise Program Verification using SMT Solvers
- L. de Moura et al: A Tutorial on Satisfiability Modulo Theories
- L. de Moura and Nikolaj Bjørner: Model-Based Theory Combination

< D > < P > < P > < P > < P >