
Basics of SMT Solving Algorithms and Theories

Ian Johnson

April 29, 2009

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 1 / 24

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 2 / 24

Vocabulary and Preliminaries

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 3 / 24

Vocabulary and Preliminaries

What is the SMT problem?

SMT stands for Satisfiability Modulo Theories, and is essentially a generalization
of the SAT problem.
We say “modulo theories” because the Boolean predicates of SAT are now first
order sentences in a logic.

I At least NP-complete and at most unbounded complexity problem with
applications in AI, formal methods

I Input usually given in SMT-LIB format (CNF with sugar)

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 4 / 24

Vocabulary and Preliminaries

Definitions

I A theory T is a set of first order sentences.

I A formula F is T -satisfiable or T -consistent if F ∧ T is satisfiable in the first
order sense. Otherwise F is T -inconsistent.

I A partial assignment M is a T -model of a formula F if M is a T -consistent
partial assignment and M |= F (in the propositional sense).

I For two formulas F and G , we say F |=T G if F ∧ ¬G is T -inconsistent.

I A theory lemma is a clause C such that ∅ |=T C .

I A T -solver is a decision∗ procedure that decides the T -satisfiability of
conjunctions of ground literals.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 5 / 24

Vocabulary and Preliminaries

A Brief Look at DPLL

Based on the idea of unit propagation:

M ‖ F ,C ∨ l ⇒ Ml ‖ F ,C ∨ l if

{
M |= ¬C
l is undefined in M

conflict-driven backjumping:

MldN ‖ F ,C ⇒ Ml ′ ‖ F ,C if

MldN |= ¬C and there is
some clause C ′ ∨ l ′ such that:

F ,C |= C ′ ∨ l ′ and M |= ¬C ′,
l ′ is undefined in M, and
l ′ or ¬l ′occurs in F or in MldN

and conflict-driven learning:

M ‖ F ⇒ M ‖ F ,C if

{
each atom of C occurs in F or in M
F |= C

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 6 / 24

Previous Strategies

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 7 / 24

Previous Strategies Eager Approaches

Propositional Translation

Satisfiability-preserving translation to a propositional CNF formula.
Pros:

I Easy to do translations.

I Leverages the existant SAT-solving technology.

Cons:

I Not all theories can be translated this way.

I Translation causes exponential blow-up.

I Search starts only after entire problem is translated.

I Size of the problem usually consumes all resources before starting the search.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 8 / 24

Previous Strategies Eager Approaches

Calling External SAT Solver

The T -solver calls a SAT solver on the formula to get a (propositionally)
satisfying assignment and checks its T -consistency. If inconsistent, the conflicting
clause is added to the formula and sent back to the SAT solver.
Pros:

I Only have to write the T -solver.

I Again leverages the existant SAT-solving technology.

Cons:

I Search must complete entirely before T -inconsistency is reported.

I Search must start over at the beginning if last assignment failed.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 9 / 24

Previous Strategies Lazy Approaches

Incremental T -solving

Communicates with the DPLL module to inform of T -inconsistency before an
entire model is constructed, either at every decision or on every k decisions.
Pros:

I Early pruning of search space.

Cons:

I Not always effective. The T -solver should be faster in processing one
additional input literal than in reprocessing from scratch, but for some
theories this is impossible.

I Finding the “sweet spot”, or the right k for the best performance is guess
work.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 10 / 24

Previous Strategies Lazy Approaches

On-line SAT solving

Builds off the incremental approach by allowing the T -solver to generate
conflicting clauses to aid with backjumping.
Pros:

I Early pruning

I More aggressive pruning.

Cons:

I Conflicting clauses hard to generate.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 11 / 24

Previous Strategies Lazy Approaches

Theory Propagation

Guides the search process by taking the current partial assignment and deriving
other subterms of the formula. T -solver is no longer a validator for the DPLL
search.
Pros:

I Analagous to the importance of unit propagation in DPLL.

I For many theories, this process exhaustively executed gives a great increase
of performance.

I Exhaustively executed, this eliminates the need for unit propagation on theory
lemmas.

Cons:

I Conflict analysis highly non-trivial.

I If not performed exhaustively, duplicate results are extraneously generated.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 12 / 24

The DPLL(T) Framework

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 13 / 24

The DPLL(T) Framework

Transactions between DPLL and T-Solver

Sufficient communication for an incremental on-line solver with theory
propagation is given in the following set of messages:

I Notify T -Solver that a certain literal has been set to true.

I Ask T -Solver to check the current partial assignment is T -inconsistent (with
strength) and give an explanation.

I Ask T -Solver to identify currently undefined input literals that are
T -consequences of M.

I Ask T -Solver to provide a justification for a T -entailment of a
theory-propagated literal for conflict clause learning.

I Ask T -Solver to undo the last n notifications that a literal has been set to
true.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 14 / 24

Useful Theories

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 15 / 24

Useful Theories

Equality of Uninterpreted Functions (EUF)

Finds basic unsatisfiable errors such as

(f (f (a)) 6= b ∨ f (f (f (b))) 6= b) ∧ f (a) = a ∧ a = b

by using a congruence closure algorithm to create congruence classes and
checking the results against a list of suspected equalities and disequalities,
inconsistencies are found.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 16 / 24

Useful Theories

Difference Logic

(Still NP-Complete) subset of integer linear arithmetic problems where all
constraints are of the form

x − y ≤ c

Questions in bounded model checking of timed automata along with questions of
circuit timing analysis can be answered with this logic. Näıvely solvable using an
iterative Bellman-Ford method, but better negative-weight cycle detection
algorithms are known.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 17 / 24

Useful Theories

Bit-Vectors

NP-Complete theory that allows fixed-width bit vectors to have the following
operators executed on them: Assignment =, named selection [i : j], concatenation
::, arithmetic {+,−, ∗, <} where ∗ is multiplication by a scalar, and bitwise
operators {AND,OR,NOT}

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 18 / 24

Useful Theories

Interpreted Sets and Bounded Quantification

An expressive NP-Complete theory of heap-manipulating loop-free and
procedure-free programs. Strategy for proving a program T correct: compute
wp(T , true) and decide satisfiability of ¬wp(T , true), giving ¬wp(T , true) is
unsatisfiable if and only if T does not go wrong.

T ∈ Stmt ::=Assert(ϕ) | Assume(ϕ) |
x := new | free(x) | x := t |
f (x) := y | T1; T2 | T1�T2

c ∈ Integer
x ∈ Variable
f ∈ Function
ϕ ∈ Formula ::= α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ
α ∈ ∀Formula ::= γ | α1 ∧ α2 | α1 ∧ α2 | ∀x ∈ S.α

γ ∈ GFormula ::= t1 = t2 | t1 < t2 | t1
f−→ t2

f−→ t3 | ¬γ
t ∈ Term ::= c | x | t1 − t2 | t1 + t2 | f (t) | ite(t = t′, t1, t2)
S ∈ Set ::= g−1(t) | Btwn(f , t1, t2)

Figure: Program statement syntax (top) and formula syntax (bottom)

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 19 / 24

Combining Theories

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 20 / 24

Combining Theories

Nelson-Oppen Method

A solver for the union of theories T1 and T2 can be constructed using the
Nelson-Oppen procedure if the two have disjoint signatures (Σ1 ∩ Σ2 = {=}) and
are stably infinite (i.e. every satisfiable quantifier-free formula is satisfiable in an
infinite model).
For Γ a set of literals of Σ1 ∪ Σ2, want to purify Γ into Γ1 ∧ Γ2 such that Γi ⊆ Σα

i

for α = {V(Γ1) ∩ V(Γ2)}. A partition φ (conjuction of many equalities and
disequalities) of α is guessed and the individual solvers return if Γi ∧ φ is
satisfiable.
A theory is convex iff for for all finite sets Γ of literals and for all non-empty
disjunctions

∨
i∈I ui ' vi of variables, Γ |=T

∨
i∈I ui ' vi iff Γ |=T ui ' vi for some

i ∈ I .
If the two theories are convex, then this guessing can be changed into deducing
the correct partition by propagating equalities (let Γ2 know if T1 ∪ Γ1 |= x ' y
and vice versa).

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 21 / 24

Combining Theories

Model-Based Method

(i) Each theory Ti maintains a model Mi for Γi (or a subset of Γi).
(ii) Sometimes if uMi = vMi then a case split is introduced for u ' v .
(iii) To satisfy newly assigned literals or te imply fewer equalities, models can be
changed.
Rules added to SMT:

M-Propagate: M, Γ ‖ F ⇒M, Γ(u ' v)d ‖ F if

 u, v ∈ V, (u ' v) /∈ L
uMi = vMi

add (u ' v) to L
M-Mutate: M, Γ ‖ F ⇒M′, Γ ‖ F if {M′ is some variant of M .
To minimize case splits, equivalence classes are kept for an equivalence relation
RM(u, v) ⇐⇒ uM = vM.
(i) “Opportunistic equality propagation”: eagerly propagate equality deductions.
(ii) “Postponing model-based equality propagation”: delay applying the rule
M-Propagate until all existing case splits have been performed.
(iii) For a mutated model, create a more diverse model δ(Mk), such that
|classes(RMk

)| ≤ |classes(Rδ(Mk))|.

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 22 / 24

Reading

Outline

Vocabulary and Preliminaries

Previous Strategies
Eager Approaches
Lazy Approaches

The DPLL(T) Framework

Useful Theories

Combining Theories

Reading

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 23 / 24

Reading

References

I R. Nieuwenhuis and A. Oliveras: Solving SAT and SAT Modulo Theories:
from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T)

I R. Bruttomesso et al: A Lazy and Layered SMT(BV) Solver for Hard
Industrial Verification Problems

I S. Lahiri and S. Qadeer: Back to the Future: Revisiting Precise Program
Verification using SMT Solvers

I L. de Moura et al: A Tutorial on Satisfiability Modulo Theories

I L. de Moura and Nikolaj Bjørner: Model-Based Theory Combination

Ian Johnson () Basics of SMT Solving Algorithms and Theories April 29, 2009 24 / 24

	Vocabulary and Preliminaries
	Previous Strategies
	Eager Approaches
	Lazy Approaches

	The DPLL(T) Framework
	Useful Theories
	Combining Theories
	Reading

