
The GL Clause Processor

Sol Swords

September 23, 2009

Sol Swords () The GL Clause Processor September 23, 2009 1 / 19

Outline

About GL

About clause processors

The GL clause processor

Verifying the Clause Processor

Clause Processor Verification Tidbits

Conclusion

Sol Swords () The GL Clause Processor September 23, 2009 2 / 19

About GL

What is GL?

GL is a framework for proving difficult theorems by symbolic simulation using
BDD-based Boolean reasoning.

(let* ((s0 (xor (bit 0 a) (bit 0 b))
 (c0 (and (bit 0 a) (bit 0 b))
 (x1 (xor (bit 1 a) (bit 1 b)))
 (s1 (xor c0 x1))
 (j1 (and (bit 1 a) (bit 1 b)))
 (c1 (or j1 (and c0 x1)))
 ...
 ...
 ...)
 (list s0 s1 s2 ... s10))

High-level Specification

Low-level Implementation

+

Sol Swords () The GL Clause Processor September 23, 2009 3 / 19

About GL

What is GL?

GL is a framework for proving difficult theorems by symbolic simulation using
BDD-based Boolean reasoning.

+

High-level Specification
 (symbolic simulator)

Low-level Implementation
 (symbolic simulator)

A A A A A A A A A A9 8 7 6 5 4 3 2 1 0

B B B B B B B B B B9 8 7 6 5 4 3 2 1 0 sym

sym

=
A + Bsym

A B sym

Sol Swords () The GL Clause Processor September 23, 2009 3 / 19

About GL

Seen last time: Code transform

I Code transform creates symbolic counterparts for ACL2 functions

I Symbolic counterparts proven to correctly simulate their original functions

Concrete Inputs Concrete Result

Symbolic Inputs Symbolic Result

-F

-
Fsym

6
ev

6
ev

I Problem: Many proofs necessary, many new functions introduced, lots of
theorem proving time, unreliable automation for proofs.

Sol Swords () The GL Clause Processor September 23, 2009 4 / 19

About GL

The new way: Verified interpreter

I Interpreter carries out symbolic execution
I Inputs (abstractly): term, symbolic bindings, set of definitions
I Uses existing symbolic counterparts of some “primitives”
I Can concretely execute a fixed set of functions

(EQUAL (A B)

 (A B))
+

Term

Bindings
((A .)

 (B .))

Definitions

(EQUAL (FOO X)
 (LET ((Y ...))
 (IF ...))

Symbolic
Interpreter

Primitive
Symbolic

Counterparts

Concretely
Executable
Functions

Symbolic
Result

�

Sol Swords () The GL Clause Processor September 23, 2009 5 / 19

About GL

Verified Interpreter

I Interpreter and primitive symbolic counterparts are verified; no need to
generate and verify other symbolic counterparts.

I Contrast with the “verifying compiler” approach.

I Performance: Sometimes slow to interpret through recursive definitions.
Solution: each interpreter has

I a fixed set of functions which it can directly execute on concrete values
I a fixed set of symbolic counterparts which it can directly execute.

May define new interpreters with different such sets of functions.

I Interpreter may be used in a clause processor to prove theorems.

Sol Swords () The GL Clause Processor September 23, 2009 6 / 19

About clause processors

What is a clause processor?

From ACL2 documentation: “A simplifier at the level of goals, where a goal is
represented as a clause.”

I User-defined function that takes one goal clause and produces a list of new
clauses.

I Soundness contract: proving all of the new clauses suffices to prove the goal.

I May be verified (requires meta-level proof) or not (requires trust tag.)

Clause
Clause

Processor
(implies
 (foo a b)
 (bar a b c))

Derived
Clauses

Sol Swords () The GL Clause Processor September 23, 2009 7 / 19

About clause processors

Clause Processor Verification

Prove correctness with respect to an evaluator function
eval(Term, Alist) → Object which gives a semantics to quoted terms. Example:

(eval ’(if a (cons a ’b) ’foo) ’((a . bar)))
⇒ (bar . b)

Clause processor correctness statement:

(implies (and ... ;; well-formedness hyps

(eval (conjoin-clauses
(clause-proc goal hints ...))
my-alist))

(eval (disjoin goal) alist))

Sol Swords () The GL Clause Processor September 23, 2009 8 / 19

The GL clause processor

GL Clause Processor Flow

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Clause Processor

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Symbolic
Interpreter

A[0] = A[8] = 0

B[0] = 1

Predicate

Parametrize

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Symbolic
Interpreter

True
or

Counterexample

Result

Sol Swords () The GL Clause Processor September 23, 2009 9 / 19

The GL clause processor

GL Clause Processor: Inputs

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

I Clause: the goal to be proved

I Hypothesis, conclusion, bindings: hints to
the clause processor

I Bindings associate a symbolic object to
each free variable in the clause

I Hypothesis gives “type”/”shape”
constraints on variables

I Conclusion may further restrict variables
(may itself be an IMPLIES term).

Sol Swords () The GL Clause Processor September 23, 2009 10 / 19

The GL clause processor

GL Clause Processor: Side Conditions

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

I Coverage:
I Symbolic simulation (if successful) proves:

The conclusion holds of input vector x if x is
a possible value of the symbolic inputs used
in the simulation.

I To relate this to the hypothesis, must show:
If input vector x satisfies the hypothesis, then
it is a possible value of the symbolic inputs.

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Sol Swords () The GL Clause Processor September 23, 2009 11 / 19

The GL clause processor

GL Clause Processor: Side Conditions

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

I Relevance:
I Clause, hypothesis, conclusion are

independent inputs to the clause processor
I Symbolic simulation (with coverage)

effectively proves

hypothesis⇒ conclusion

I Therefore, prove that this implies the clause
and we’re done.

I Typically trivial by construction.

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Sol Swords () The GL Clause Processor September 23, 2009 11 / 19

The GL clause processor

GL Clause Processor: Parametrization

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

I Symbolic bindings may cover more than is
accepted by the hypothesis - often better
symbolic simulation performance is achievable
if inputs cover less

I Symbolically simulating the hypothesis on the
inputs yields a symbolic predicate

I Parametrization by that predicate yields new
symbolic objects with coverage restricted to
the space recognized by the hypothesis.

Symbolic
Interpreter

A[0] = A[8] = 0

B[0] = 1

Predicate

Parametrize

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Sol Swords () The GL Clause Processor September 23, 2009 12 / 19

The GL clause processor

GL Clause Processor: Simulation

I Symbolically execute the conclusion to
determine whether it holds on the
space represented by the restricted
bindings

I Result: often T or a set of
counterexamples

I May fail or produce an ambiguous
result (stack depth overrun,
unimplemented primitive)

spec(A, B)
=

impl(A, B)

Conclusion

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Symbolic
Interpreter

True
or

Counterexample

Result

Sol Swords () The GL Clause Processor September 23, 2009 13 / 19

The GL clause processor

GL Clause Processor Flow: Recap

A is an 8-bit even natural

B is a 6-bit odd integer

Hypothesis

Bindings
A symbolic 9-bit integer

B symbolic 6-bit integer

spec(A, B)
=

impl(A, B)

Conclusion

Hints

Clause
If A is an 8-bit even
natural and B is a

6-bit odd integer, then
spec(A, B) = impl(A, B)

Clause Processor

Side
Conditions

Relevance
Proving

(Hyp => Concl)
suffices to prove

Clause

Coverage
Hypothesis

holds for (a, b)
=>

Bindings
 cover (a, b)

Symbolic
Interpreter

A[0] = A[8] = 0

B[0] = 1

Predicate

Parametrize

Restricted Bindings
A sym. 8-bit even natural

B sym. 6-bit odd integer

Symbolic
Interpreter

True
or

Counterexample

Result

Sol Swords () The GL Clause Processor September 23, 2009 14 / 19

Verifying the Clause Processor

Verifying GL Clause Processors

I First, verify the generic clause processor:
I Crux: symbolic interpreter is faithful to an evaluator’s interpretation of a given

term (next slide)
I Show that given the side conditions, if the interpreter’s result is always true,

then the clause is a theorem

I Automate the correctness proof of new clause processors by functional
instantiation of the generic one

I DEF-GL-CLAUSE-PROCESSOR macro provided; introduces and verifies a new GL
clause processor.

Sol Swords () The GL Clause Processor September 23, 2009 15 / 19

Verifying the Clause Processor

Correctness of Interpreter

I term: what we’re symbolically simulating

I bindings: association of symbolic objects to free variables of term

I defs: function definitional equations given to interpreter

I env : environment for symbolic object evaluation

I EVAL(term, alist) → obj: Evaluator for quoted ACL2 terms

I GL-EV(sym-obj, env) → obj: Evaluator for symbolic objects.

I INTERP(term, bindings, defs) → sym-obj: Symbolic interpreter.

(Abstract) correctness statement:

∀term, bindings, defs, env .

(∀alist . EVAL(conjoin(defs), alist))

⇒ GL-EV(INTERP(term, bindings, defs), env)

= EVAL(term, GL-EV(bindings, env))

Sol Swords () The GL Clause Processor September 23, 2009 16 / 19

Verifying the Clause Processor

Correctness of Interpreter

I term: what we’re symbolically simulating

I bindings: association of symbolic objects to free variables of term

I defs: function definitional equations given to interpreter

I env : environment for symbolic object evaluation

I EVAL(term, alist) → obj: Evaluator for quoted ACL2 terms

I GL-EV(sym-obj, env) → obj: Evaluator for symbolic objects.

I INTERP(term, bindings, defs) → sym-obj: Symbolic interpreter.

Concrete Alist Concrete Result

Symbolic Bindings Symbolic Result

-EVAL(term,...)

-INTERP(term,...)

6
GL-EV

6
GL-EV

Sol Swords () The GL Clause Processor September 23, 2009 16 / 19

Clause Processor Verification Tidbits

Assumed Definitions

I Definitions used by interpreter are not considered axiomatically true

I But we assume they are for the interpreter correctness statement

I Therefore, we are forced to emit them as output clauses from the clause
processor.

I To automate their proofs, “label” each definition clause by adding a trivially
true hypothesis and use computed hints to eliminate them

I See “clause-processors/use-by-hint.lisp”.

((not (use-these-hints
’((:by (:definition len)))))

(equal (len x)
(if (consp x)

(+ 1 (len (cdr x)))
0)))

Sol Swords () The GL Clause Processor September 23, 2009 17 / 19

Clause Processor Verification Tidbits

Instantiating derived clauses

(implies (eval (conjoin-clauses (clause-proc clause hints))
some-alist)

(eval (disjoin clause) original-alist))

I Problem: Certain derived clauses need to be instantiated with different alists
or multiple times in the clause processor correctness proof

I Solution: May choose for some-alist any alist you want. Use a Skolem
function:

(defchoose falsifier (a) (x)
(not (eval x a)))

and choose:

(falsifier (conjoin-clauses (clause-proc clause hints))).

I If c is a clause in the list (clause-proc clause hints), then

(eval (conjoin-clauses (clause-proc clause hints))
(falsifier (conjoin-clauses (clause-proc clause hints))))

implies for all a, (eval c a).

Sol Swords () The GL Clause Processor September 23, 2009 18 / 19

Conclusion

Conclusions

I “Verified interpreter” rather than “verifying compiler” seems to be a win
here.

I Eliminates a lot of theorem proving
I Little performance impact from interpretation (if you’re careful)

I Challenging but surprisingly doable to verify complicated clause processors.

I Orchestration between clause processors and computed hints can be very
powerful.

Sol Swords () The GL Clause Processor September 23, 2009 19 / 19

	About GL
	About clause processors
	The GL clause processor
	Verifying the Clause Processor
	Clause Processor Verification Tidbits
	Conclusion

