Graphical Models of Separation Logic

lan Wehrman, Tony Hoare, Peter O'Hearn

Outlook

- Present a new model of programs and assertions for a variety of languages.
- Use model for language-independent reasoning.

Program logics

- Logics tailored for program correctness:
 - programming + assertion languages,
 - program + assertion semantics,
 - axioms and inference rules.

Hoare logic

- Program logic for while-loop languages.
- Hoare triple: P {C} Q
 - C is a program,
 - P and Q are assertions about program state.
- Informal meaning:
 - if C is run in a P-state, then (if it halts) it halts in a Q-state.

Semantics of P {C} Q

- Assertion semantics:
 - $\langle\!\!\langle \rangle\!\!\rangle$: Assertions $\rightarrow \mathcal{P}(\text{States})$
- Program semantics:
 - [-]: Programs \rightarrow (States $\rightarrow \mathcal{P}(\text{States}))$
- Triple semantics:
 - $\forall s \in \langle P \rangle$. $\llbracket C \rrbracket(s) \subseteq \langle Q \rangle$

Proving P {C} Q

- Axioms:
 - e.g., $P[E/x] \{x := E\} P$

y=3 {x := y} x=3

- Inference rules:
 - e.g., P {C} R and R {C'} Q implies P {C;C'} Q.
 if y=3 {x := y} x=3 and x=3 {z := x} z=3
 then y=3 {x:=y ; z:=x} z=3

Soundness

- Axioms are true:
 - $\forall s \in \langle P[E/x] \rangle$. $[x:=E](s) \subseteq \langle P \rangle$
- Inference rules preserve truth:
 - If $\forall s \in \langle P \rangle$. $[C](s) \subseteq \langle R \rangle$, and
 - $\forall s \in \langle R \rangle$. $[C'](s) \subseteq \langle Q \rangle$
 - then $\forall s \in \langle P \rangle$. $[C;C'](s) \subseteq \langle Q \rangle$

Separation logic

- Program logic for C programs (pointers)
 - different program state: vars+heap
 - different assertion language: P*Q
 - different semantic functions: «-» and [-]
 - different axioms
 - same inference rules + extras

Tony has a dream

- ...a unified theory of programming.
- Most languages share basic constructs:
 e.g., sequentiality and concurrency
 - Reasoning about general features should be language-independent
 - Reasoning about specific features should be language-specific

Today

- Toward language-independent reasoning:
 - present a <u>very</u> general model of all kinds of programs and assertions
 - characterize sequentiality and concurrency
 - give semantics to triples in this model
 - show that inference rules still hold

A very general model

- Sets of labeled directed graphs
- Graph represents a program execution:
 - nodes events that occur during execution
 - edges dependency between events
 - labels information flow

Simple assignment

x := x + y

Assertions as programs

- Use same model for assertions as programs
- Assertions as underspecified programs:
 - e.g. "x=2 \/ y=3" any execution in which either the last write to x is 2, or last to y is 3.

Usage

- To use this for <u>your</u> language, provide semantic functions:
 - $\langle\!\langle \rangle\!\rangle$: Assertions $\rightarrow \mathcal{P}(Graphs)$
 - [-]: Programs $\rightarrow \mathcal{P}(Graphs)$
- Today, ignore languages, just deal with <u>arbitrary</u> sets of graphs P.

Dependency

- To define sequentiality and concurrency, consider dependency between events.
- $p \rightarrow q$ means "event q depends on event p"
 - Might describe control flow, data flow, etc.

Traces

- trace: subset of events from an execution
- Represents execution of part of a program
- Lift dependency to traces:
 - $tp \rightarrow tq$ means $\exists p \in tp, q \in tq$ with $p \rightarrow q$

Concurrency

- A trace can be separated into concurrent parts by partitioning its events:
 - Write tp^*tq for concurrent composition of traces.
 - tr=tp*tq iff tr=tp \cup tq and tp \cap tq= \emptyset .
 - $P^*Q = \{tr \mid \exists tp \in P, tq \in Q : tr = tp^*tq\}.$

Concurrency

Sequentiality

- A trace can be separated sequentially by partitioning and respecting dependency:
 - Write tp;tq for sequential composition
 - tr=tp;tq iff tr=tp*tq and \neg (tq \rightarrow tp)
 - $P;Q = \{tr \mid \exists tp \in P, tq \in Q : tr=tp;tq\}.$

Other constructions

- skip = {∅}
- false = \varnothing
- Disjunction: $P \lor Q = P \cup Q$
- Conjunction: $P \land Q = P \cap Q$

Refinement

- $P \models Q$ means $P \subseteq Q$
 - program P refines program Q
 - assertion P semantically entails assertion Q
 - program P satisfies assertion Q
- e.g., $P \land Q \models P$, but <u>not</u> $P^*Q \models P$

Algebra

- skip is unit, false is zero
- (;) is associative, V-distributive, monotonic
 - $P \vDash Q$ implies $P; R \vDash Q; R$
- (;) satisfies Kleene laws:
 - P* is least fixpoint of $\lambda X.(skip \lor (X;P))$

Algebra

- (*) satisfies all properties of (;), plus commutativity
 - $P;Q \models P*Q$
- Exchange Law relates (;) and (*):
 - $(P^*Q);(P^*Q') \models (P;P')^*(Q;Q')$

Hoare triples

- New semantics: $P \{Q\} R$ means $(P;Q) \models R$.
 - any trace tp;tq that starts with tp $\in P$ and then does tq $\in Q$ must also be in R

Inference rules

- if P {Q} R and P {Q} R' then P {Q} $R \land R'$
- if P {Q} R and P' {Q} R then $P \lor P'$ {Q} R
- if P {Q} S and S {Q'} R then P {Q;Q'} R

Sequential Proof

P;(Q;Q')

- ⊨ { associativity of (;) }
 (P;Q);Q'
- \models { first assumption, $P;Q \models S$, and monotonicity of (;) }

S;Q'

 \models { second assumption S;Q' \models R }

R.

Separation Logic

- if P {Q} R and P' {Q'} R' then
 P*P' {Q*Q'} R*R'
 - Disjoint concurrency
- if P {Q} R then P*F {Q} R*F
 - Frame rule

Frame Proof

(P*F);Q

- ⊨ { commutativity of (*) }
 (F*P);Q
- $\models \{ \text{Exchange theorem, with } (Q^*\text{skip}) = Q \}$ $F^*(P;Q)$
- $\models \{ \text{ assumption } \mathsf{P}; \mathsf{Q} \vDash \mathsf{R}, \text{ monotonicity of } (*) \}$

R*F.

Beyond

- Graphs also model logic for non-disjoint concurrency:
 - rely/guarantee
- But healthiness conditions are needed:
 - transitivity and acyclity

Conclusion

- Presented new, general model for programs, assertions and program logics
- Characterized concurrency and sequentiality
- Language-independent validation of inference rules of program logics

References

- Hoare, <u>Wehrman</u>, O'Hearn. *Graphical Models of Separation Logic*. Marktoberdorf Summer School 2008.
- <u>Wehrman</u>, Hoare, O'Hearn. *Graphical Models of Separation Logic*. Information Processing Letters, 2009.
- Hoare, Möller, Struth, <u>Wehrman</u>. Concurrent Kleene Algebra. CONCUR 2009.
- Hoare, Möller, Struth, <u>Wehrman</u>. Foundations of Concurrent Kleene Algebra. REL/MICS 2009.

Parallelism

- Write tp||tq for parallel composition
 - tr=tp||tq iff tr=tp;tq and tr=tq;tp
- P||Q is parallel composition of P and Q
 - $P||Q = (U tp \in P, tq \in Q : tp||tq)$

Parallelism

Choice

- Write tp[]tq for nondeterministic choice
 - tr=tp[]tq iff tp=tp \cup tq and (tp= \emptyset or tq= \emptyset)
- P[]Q is choice between P and Q
 - $P[]Q = (U tp \in P, tq \in Q : tp[]tq)$

Array Assignment

A[x] = y

Indirect Assignment

x* = y

CSP Interleaving

c!x | (b?y . P(y))

CSP Communication

b!x | (b?y . P(y))

(x = x+y); (c?z.(d!(x-z) | d?y))

Allocation

Disposal

