Graphical Models of Separation Logic

lan Wehrman, Tony Hoare, Peter O'Hearn

Outlook

- Present a new model of programs and assertions for a variety of languages.
- Use model for language-independent reasoning.

Program logics

- Logics tailored for program correctness:
- programming + assertion languages,
- program + assertion semantics,
- axioms and inference rules.

Hoare logic

- Program logic for while-loop languages.
- Hoare triple: P \{C\} Q
- C is a program,
- P and Q are assertions about program state.
- Informal meaning:
- if C is run in a P-state, then (if it halts) it halts in a Q-state.

Semantics of $P\{C\} Q$

- Assertion semantics:
- $\langle-\rangle:$ Assertions $\rightarrow \mathcal{P}$ (States)
- Program semantics:
- $\llbracket-\rrbracket:$ Programs $\rightarrow($ States $\rightarrow \mathcal{P}($ States $))$
- Triple semantics:

$$
\cdot \forall s \in\langle P\rangle . \llbracket C \rrbracket(s) \subseteq\langle Q\rangle
$$

Proving $P\{C\} Q$

- Axioms:
- e.g., $P[E / x]\{x:=E\} P$

$$
y=3\{x:=y\} x=3
$$

- Inference rules:
- e.g., $P\{C\} R$ and $R\left\{C^{\prime}\right\} Q$ implies $P\left\{C ; C^{\prime}\right\} Q$.

$$
\begin{gathered}
\text { if } y=3\{x:=y\} x=3 \text { and } x=3\{z:=x\} z=3 \\
\text { then } y=3\{x:=y ; z:=x\} z=3
\end{gathered}
$$

Soundness

- Axioms are true:
- $\forall s \in\langle P[E / x]\rangle$. $\llbracket x:=E \rrbracket(s) \subseteq 《 P\rangle$
- Inference rules preserve truth:
- If $\forall s \in\langle P\rangle$. $\llbracket C \rrbracket(s) \subseteq\langle R\rangle$, and
- $\forall s \in \mathbb{R}\rangle . \llbracket C^{\prime} \rrbracket(s) \subseteq\langle Q\rangle$
- then $\forall s \in\langle P\rangle$. $\left.\llbracket C ; C^{\prime} \rrbracket(s) \subseteq 《 Q\right\rangle$

Separation logic

- Program logic for C programs (pointers)
- different program state: vars+heap
- different assertion language: $\mathrm{P}^{*} \mathrm{Q}$
- different semantic functions: 《-》 and $\mathbb{-}-\rrbracket$
- different axioms
- same inference rules + extras

Tony has a dream

- ...a unified theory of programming.
- Most languages share basic constructs: e.g., sequentiality and concurrency
- Reasoning about general features should be language-independent
- Reasoning about specific features should be language-specific

Today

- Toward language-independent reasoning:
- present a very general model of all kinds of programs and assertions
- characterize sequentiality and concurrency
- give semantics to triples in this model
- show that inference rules still hold

A very general model

- Sets of labeled directed graphs
- Graph represents a program execution:
- nodes - events that occur during execution
- edges - dependency between events
- labels - information flow

Simple assignment

$$
x:=x+y
$$

Assertions as programs

- Use same model for assertions as programs
- Assertions as underspecified programs:
- e.g." $x=2 \vee y=3$ " any execution in which either the last write to x is 2 , or last to y is 3 .

Usage

- To use this for your language, provide semantic functions:
- 《-》: Assertions $\rightarrow \mathcal{P}$ (Graphs)
- $\mathbb{I} \mathbb{\rrbracket}$: Programs $\rightarrow \mathcal{P}$ (Graphs)
- Today, ignore languages, just deal with arbitrary sets of graphs P.

Dependency

- To define sequentiality and concurrency, consider dependency between events.
- $p \rightarrow q$ means "event q depends on event p "
- Might describe control flow, data flow, etc.

Traces

- trace: subset of events from an execution
- Represents execution of part of a program
- Lift dependency to traces:
- tp \rightarrow tq means $\exists p \in \mathrm{tp}, \mathrm{q} \in \mathrm{tq}$ with $\mathrm{p} \rightarrow \mathrm{q}$

Concurrency

- A trace can be separated into concurrent parts by partitioning its events:
- Write tp*tq for concurrent composition of traces.
- $\mathrm{tr}=\mathrm{tp} * \mathrm{tq}$ iff $\mathrm{tr}=\mathrm{tp} \cup \mathrm{tq}$ and $\mathrm{t} p \cap \mathrm{tq}=\varnothing$.
- $P^{*} Q=\left\{\operatorname{tr} \mid \exists t p \in P, \operatorname{tq} \in Q . \operatorname{tr}=\mathrm{tp}{ }^{*} \mathrm{tq}\right\}$.

Concurrency

Sequentiality

- A trace can be separated sequentially by partitioning and respecting dependency:
- Write tp;tq for sequential composition
- tr=tp;tq iff tr=tp*tq and $\neg(\mathrm{tq} \rightarrow \mathrm{tp})$
- $P ; Q=\{t r \mid \exists t p \in P, t q \in Q . \operatorname{tr}=t p ; t q\}$.

Sequentiality

Other constructions

- skip $=\{\varnothing\}$
- false $=\varnothing$
- Disjunction: $P \vee Q=P \cup Q$
- Conjunction: $P \wedge Q=P \cap Q$

Refinement

- $\mathrm{P} \vDash \mathrm{Q}$ means $\mathrm{P} \subseteq \mathrm{Q}$
- program P refines program Q
- assertion P semantically entails assertion Q
- program P satisfies assertion Q
- e.g., $P \wedge Q \vDash P$, but not $P^{*} Q \vDash P$

Algebra

- skip is unit, false is zero
- (;) is associative, \vee-distributive, monotonic
- $\mathrm{P} \vDash \mathrm{Q}$ implies $\mathrm{P} ; \mathrm{R} \vDash \mathrm{Q} ; \mathrm{R}$
- (;) satisfies Kleene laws:
- P^{*} is least fixpoint of λX.(skip $\left.\vee(X ; P)\right)$

Algebra

- (*) satisfies all properties of (;), plus commutativity
- $P ; Q \vDash P * Q$
- Exchange Law relates (;) and $\left(^{*}\right)$:
- $\left(P^{*} Q\right) ;\left(P^{*} Q^{\prime}\right) \vDash\left(P ; P^{\prime}\right)^{*}\left(Q ; Q^{\prime}\right)$

Hoare triples

- New semantics: $P\{Q\} R$ means $(P ; Q) \models R$.
- any trace tp; tq that starts with $t p \in P$ and then does $t q \in Q$ must also be in R

Inference rules

- if $P\{Q\} R$ and $P\{Q\} R^{\prime}$ then $P\{Q\} R \wedge R^{\prime}$
- if $P\{Q\} R$ and $P^{\prime}\{Q\} R$ then $P \vee P^{\prime}\{Q\} R$
- if $P\{Q\} S$ and $S\left\{Q^{\prime}\right\} R$ then $P\left\{Q ; Q^{\prime}\right\} R$

Sequential Proof

P;(Q;Q’)

$\vDash\{$ associativity of (;) \}
(P;Q);Q'
$\vDash\{$ first assumption, $\mathrm{P} ; \mathrm{Q} \vDash \mathrm{S}$, and monotonicity of $(;)\}$
S;Q'
$\vDash\left\{\right.$ second assumption $\mathrm{S} ; \mathrm{Q}^{\prime} \vDash \mathrm{R}$ \}
R.

Separation Logic

- if $P\{Q\} R$ and $P^{\prime}\left\{Q^{\prime}\right\} R^{\prime}$ then $P^{*} P^{\prime}\left\{Q^{*} Q^{\prime}\right\} R^{*} R^{\prime}$
- Disjoint concurrency
- if $P\{Q\} R$ then $P * F\{Q\} R^{*} F$
- Frame rule

Frame Proof

(P*F);Q

$\vDash\{$ commutativity of (*) $\}$
(F*P);Q
$\vDash\left\{\right.$ Exchange theorem, with $\left(\mathrm{Q}^{*}\right.$ skip $\left.)=\mathrm{Q}\right\}$
$F^{*}(P ; Q)$
$\vDash\left\{\right.$ assumption $\mathrm{P} ; \mathrm{Q} \vDash \mathrm{R}$, monotonicity of ${ }^{(*)}$ \}
R*F。

Beyond

- Graphs also model logic for non-disjoint concurrency:
- rely/guarantee
- But healthiness conditions are needed:
- transitivity and acyclity

Conclusion

- Presented new, general model for programs, assertions and program logics
- Characterized concurrency and sequentiality
- Language-independent validation of inference rules of program logics

References

- Hoare,Wehrman, O’Hearn. Graphical Models of Separation Logic. Marktoberdorf Summer School 2008.
- Wehrman, Hoare, O’Hearn. Graphical Models of Separation Logic. Information Processing Letters, 2009.
- Hoare, Möller, Struth,Wehrman. Concurrent Kleene Algebra. CONCUR 2009.
- Hoare, Möller, Struth,Wehrman. Foundations of Concurrent Kleene Algebra. REL/MICS 2009.

Parallelism

- Write tpl|tq for parallel composition
- tr=tp||tq iff tr=tp;tq and tr=tq;tp
- $\mathrm{P} \| \mathrm{Q}$ is parallel composition of P and Q
- $\mathrm{P} \| \mathrm{Q}=(\mathrm{U} \mathrm{tp} \in \mathrm{P}, \mathrm{tq} \in \mathrm{Q}: \mathrm{tp} \| \mathrm{tq})$

Parallelism

Choice

- Write tp[]tq for nondeterministic choice - tr=tp[]tq iff tp=tputq and ($\mathrm{tp}=\varnothing$ or $\mathrm{tq}=\varnothing$)
- $P[] Q$ is choice between P and Q
- P[] $\mathrm{Q}=(\mathrm{U} \mathrm{tp} \in \mathrm{P}, \mathrm{tq} \in \mathrm{Q}: \mathrm{tp}[] \mathrm{tq})$

Choice

Array Assignment

$$
A[x]=y
$$

Indirect Assignment

$$
x^{*}=y
$$

CSP Interleaving

$c!x \mid(b ? y \cdot P(y))$

CSP Communication

b!x | (b?y.P(y))

Combined Example

$$
(x=x+y) ;(c ? z \cdot(d!(x-z) \mid d ? y))
$$

Allocation

Disposal

