Defattach: Support for
Calling Constrained Functions
and Soundly Modifying ACL2

Matt Kaufmann

ACL2 Seminar, February 3, 2010



OUTLINE

» Introduction

» Motivation

» Evaluation Semantics
» Some Tricky Aspects
» Conclusion



Disclaimer and Invitation

This is work in progress.

| welcome your feedback on this
design.



OUTLINE

» INTRODUCTION

» Basics
» Encapsulate requirement
» Proof Obligations
» Examples
» Motivation
» Evaluation Semantics

» Some Tricky Aspects



Basics
Basic act: (defattach f Q)

» “Attach g to f
» “Function g is the attachment
of f .
» “(f ,g) is an attachment pair.”
The effect:

» Any call of f is replaced by
the corresponding call of g.



6

Encapsulate requwement
Attach only to encapsulated fns.
(encapsul ate ((f (x) t))
... ) generates raw Lisp like:

(defun f (x)
(i1f <ok to run_attachnent>
(funcall <attachnent> x)
(error "Undefined!”’)))

(Hmmm... maybe follow t r ace$ approach?)



Proof Obligations
Consider (defattach f g).

» Constraint proof obligation:
“g satisfies the constraint, ¢,
of f ™
-e\{f = g}.

» Guard proof obligation: For
guards G; and G4 of f and g,
= (Gt — Gg).



Examples
(defattach f @)

: Sane as above:
(defattach ((f g)))

(defattach ((f1 gl)
(f2 g2)
(f3 93)))



(defattach
((f g
:hints ; guards
((" Goal "
;1 n-theory
(enable fo00))))))
(defattach
((f 9))

hints ; constraints
(("Goal" :use ny-thm))



10

(defattach ;

((f g
-hints ; guards
((" Goal "
sin-theory
(enabl e fo00))))
(h]
-hints ; guards
((" Goal "
2in-theory
(enable bar)))))
chints ; constraints

(("Goal" :use ny-thm))

both hint types



11

(defattach f nil)

, Sanme as above:
(defattach ((f nil)))

(defattach ((f1 nil)
(f2 nil)
(f3 nil)))



OUTLINE

» Introduction

» MOTIVATION (one slide)
» Evaluation Semantics

» Some Tricky Aspects

12



MOTIVATION

This may be the key slide of the
talk; I'll just talk through it.

» Constrained function
execution

» Sound modification of the
ACL2 system

» Program refinement

13



OUTLINE
» Introduction

» Motivation

» EVALUATION SEMANTICS

» Theory Review

» Theorem of WHAT?
» Evaluation Theory

» Evaluation Claim

» Consistency Claim

» Proving Consistency

» Some Tricky Aspects

14



15

Theory Review

» Axiomatic events: def un,
encapsul at e (when
non-trivial), def choose.
(Also def axi om)

» (First-order) Theory of a
session

» History, Chronology



Theorem of WHAT?

Consider for example:

ACL2 !>(+ 3 4)
7
ACL2 1>

Associated theorem:
??7?7FH(+ 3 4) =7

16



17

What does evaluation mean in
the presence of def att ach?
Assume (defattach f +).

ACL2 !'>(f 3 4)
7
ACL2 I >

Associated theorem:
??7?7FH(+ 3 4) =7



18

BUT WATCH OUT!!
Unsupported:

ACL2 '>(thm (equal (f 3 4) 7))

But we reduce the conjecture
to T, by case anal ysis.

Q E. D.



Evaluation Theory

190

Defattach axiom for attachment
pair (f,g): f(...) =9g(...).
Evaluation Theory: Axiomatized

by the session theory together
with the defattach axioms

If you are attaching g to f, then
you must want evaluate in a
theory where f is defined to be g!



20

Evaluation Claim

If expression E evaluates to
constant C,thenE =C is a
theorem of the evaluation theory.

Follows from proof obligation that
the guard of f implies the guard
of g for each attachment pair

(f,9).



21

Consistency Claim

The evaluation theory is
consistent, assuming no
defaxiom events. (Aside: It even
has a standard model.)



Proving Consistency (1)

29

Every chronology provides a
consistent theory.

So it suffices to define an
evaluation chronology whose
theory is the evaluation theory.

Consider (defattach f g).



Proving Consistency (2)

23

Replace (encapsul ate ((f

(x) t)) ...)
by (defun f (x) (g x)).

Then the original constraint for f
IS now a theorem, by the proof
obligation that g satisfies the
constraint for f .



Proving Consistency (3)

Catch: g might be defined after f !

: We need to “move” the
event introducting g in front of the
encapsul at e introducing f .

24



25

We can’t always introduce g
before f — for good reason!

(defstub f (x) t)
(defun g (x) (not (f x)))

Sufficient: acyclicity check,
where we add g as an ancestor
of f based on the new event
(defun f (x) (g x)).



26

Key Lemma. Let S be a finite set,
let < be a linear order on S, and
let P be a partial order on S.
Then there is a linear order that
contains P and is obtained from
< by a sequence of swaps, each
of which respects P.

Here, a “swap” is what you think,
and it “respects P” if we don’t
swap x and y when P(x,y).



OUTLINE

» Introduction

» Motivation

» Evaluation Semantics

» SOME TRICKY ASPECTS

Unattachment

Conditional Refinement
Avoiding attachments during
proofs

Include-Book Checks

v

v

v

v

27



SOME TRICKY
ASPECTS

Getting the details right is still a
work in progress!

28



Unattachment

(defstub f1 () t)
constraint f2=f1
constraint f3=f1
(defattach ((f1 0) (f2 0)))
(defattach ((f1 1) (f3 1)))

Must unattach 2 before

re-attaching f1: else

f1=1, f2=0, f3=1,
. Violating first constraint.



Conditional Refinement

30

(encapsulate ((f (x) t)) O
(defun g (x)

(I1f <test> <code> (f x)))
(defattach f g)

Sandip Ray might want such “tail”
calls (f x). Butwe can’t move
the second event in front of the
first!



(encapsul ate ((g (x) t))
(1 ocal

(encapsul ate ((f ...)) O)
(1 ocal

(defun g (x)

(i f <test> <code> (f x))))

Q{f := g}
(g x)

= (if <test> <code> (g x)))

(defun f (x) (g x))

31



Avoiding attachments
during proofs

(defun f (x)
(if <ok to run_attachnent>
(funcall <attachnment> x)
(error "Undefined!”’)))

When is it OK to run
attachments?

32



33

» Top-level evaluation:

» System functions during
proofs:

» Simplifying terms: NO

. Disable attachments for
function evaluation inside prover
processes (but not inside hints).

Technically: r aw ev-fncal I and

ev-fncal I! bind*di sabl e-attachnent s
to t when they are called under

wat erf al | - st ep.



34

Include-Book Checks

Question: Do we need to do our
acyclicity check during

| ncl ude- book?

(Many checks are inhibited
during i ncl ude- book, for
efficiency.)



35

Include-Book Checks

Question: Do we need to do our
acyclicity check during

| ncl ude- book?

(Many checks are inhibited
during i ncl ude- book, for
efficiency.)

| don’t know yet!

('m guessing: Yes.)



CONCLUSION

» Constrained function
execution

» Sound modification of the
ACL2 system (towards the
“Open Architecture” vision)

» Program refinement

» Others? (Consider
proliferation of
make- event .)



