
CTL vs. LTL

Robert Bellarmine Krug

Department of Computer Sciences
University of Texas at Austin

May 25, 2010

Outline

1. Some Definitions And Notation

2. LTL

3. CTL

4. CTL vs. LTL

CTL vs. LTL (2 / 40)

Outline

1. Some Definitions And Notation

2. LTL

3. CTL

4. CTL vs. LTL

CTL vs. LTL Some Definitions And Notation (3 / 40)

Kripke Structures — Definition

Let AP be a set of labels — i.e., a set of atomic propositions such
as Boolean expressions over variables, constants, and predicate
symbols.
A Kripke structure is a 4-tuple, M = (S , I ,R, L):

I a finite set of states, S ,

I a set of initial states, I ⊆ S ,

I a transition relation, R ⊆ S × S where
∀s ∈ S ,∃s ′ ∈ S such that (s, s ′) ∈ R,

I a labeling function, L, from states to the power set of atomic
propositions, L : S → 2AP .

CTL vs. LTL Some Definitions And Notation (4 / 40)

Kripke Structure — An Example

S = {s0, s1, s2, s3}
I = {s0}

R = {{s0, s1}
{s0, s2}
{s1, s1}
{s1, s3}
{s2, s0}
{s2, s3}
{s3, s0}}

L = {{s0, {p}}
{s1, {p, q}}
{s2, {p, r}}
{s3, {v}}}

p

p, r

s_0 s_1

s_2 s_3

p, q

v

CTL vs. LTL Some Definitions And Notation (5 / 40)

Infinite Paths

LTL and CTL are concerned only with infinite paths. From here
on, π will always denote an infinite path. Furthermore, π0 will
always denote π’s first element, π1 its second element, and so on.

π = (π0, π1, π2, . . .) is an infinite path in M if it respects M’s
transition relation, i.e., ∀i , (πi , πi+1) ∈ R.

πi denotes π’s ith suffix, i.e., πi = (πi , πi+1, πi+2, . . .)

(πi)j = (πi , πi+1, πi+2, . . .)
j = (πi+j , πi+j+1, πi+j+2, . . .) = πi+j

CTL vs. LTL Some Definitions And Notation (6 / 40)

Outline

1. Some Definitions And Notation

2. LTL

3. CTL

4. CTL vs. LTL

CTL vs. LTL LTL (7 / 40)

LTL BNF Syntax

A well-formed LTL formula, φ, is recursively defined by the BNF
formula:

φ ::= > ; top, or true
| ⊥ ; bottom, or false
| p ; p ranges over AP
| ¬φ ; negation
| φ ∧ φ ; conjunction
| φ ∨ φ ; disjunction
| Xφ ; next time
| Fφ ; eventually
| Gφ ; always
| φUφ ; until

From here on, lowercase letters such as p, q, and r , will denote
atomic propositions. Greek letters such as φ and ψ will denote
formulae.

CTL vs. LTL LTL (8 / 40)

LTL Semantics — the Basics

We now define the binary satisfaction relation, denoted by �, for
LTL formulae. This satisfaction is with respect a pair — 〈M, π〉, a
Kripke structure and a path thereof.

First, the basics:

I M, π � >
true is always satisfied

I M, π 6� ⊥
false is never satisfied

I (M, π � p) if and only if (p ∈ L(π0))
atomic propositions are satisfied when they are members of
the path’s first element’s labels

CTL vs. LTL LTL (9 / 40)

LTL Semantics — Boolean Combinations

The use of the Boolean operators ¬, ∧, and ∨ in LTL formulae is a
deliberate pun on their mathematical meanings.

I (M, π � ¬φ) if and only if (M, π 6� φ)

I (M, π � φ ∧ ψ) if and only if [(M, π � φ) ∧ (M, π � ψ)]

I (M, π � φ ∨ ψ) if and only if [(M, π � φ) ∨ (M, π � ψ)]

CTL vs. LTL LTL (10 / 40)

LTL Semantics — Temporal Operators

I (M, π � Xφ) if and only if (M, π1 � φ)
next time φ

I (M, π � Fφ) if and only if (∃i such that M, πi � φ)
eventually φ

I (M, π � Gφ) if and only if (∀i such that M, πi � φ)
always φ

I (M, π � φUψ) if and only if
[∃i such that (∀j < i(M, πj � φ)) ∧ (M, πi � ψ)]

φ until ψ

N.B., The U used here is the “strong until.” There is also a “weak
until,” φUwψ is equivalent to (φUψ) ∨ (Gφ).

CTL vs. LTL LTL (11 / 40)

Xp — Example Path

M, (π0, π1, . . .) � Xp

p

π
π

1
0

CTL vs. LTL LTL (12 / 40)

Fp — Example Path

M, (π0, π1, π2, π3, . . .) � Fp

p

π π

π π

0 1

2 3

CTL vs. LTL LTL (13 / 40)

Gp — Example Path

M, (π0, π1, π2, π3, . . .) � Gp

p p

p p

π π

π π

0 1

32

CTL vs. LTL LTL (14 / 40)

pUq — Example Path

M, (π0, π1, π2, π3, . . .) � pUq

p

p q

p

π π

π π

0 1

2 3

CTL vs. LTL LTL (15 / 40)

pUq — Another Example Path

M, (π0, . . .) � pUq

q

π
0

CTL vs. LTL LTL (16 / 40)

More LTL Semantics

I (M �M φ) if and only if ∀π such that π0 ∈ I , (M, π � φ)
A model, or Kripke structure, satisfies an LTL formula, when
all its paths do.

I (φ ≡ ψ) if and only if ∀M [(M �M φ)⇔ (M �M ψ)]
Two LTL formulae are equivalent when they are satisfied by
the same Kripke structures.

CTL vs. LTL LTL (17 / 40)

An LTL Equivalence

X (φ ∧ ψ) ≡ Xφ ∧ Xψ

By the previous slide, this is true if, for all M and π:

[M, π � X (φ ∧ ψ)]⇔ [M, π � (Xφ ∧ Xψ)]

[M, π � X (φ ∧ ψ)] =

[M, π1 � (φ ∧ ψ)] =

[(M, π1 � φ) ∧ (M, π1 � ψ)] =

[(M, π � Xφ) ∧ (M, π � Xψ)] =

[M, π � (Xφ ∧ Xψ)]

by definition of X

by definition of ∧

by definition of X

by definition of ∧

CTL vs. LTL LTL (18 / 40)

Some More LTL Equivalences

X (φ ∧ ψ) ≡ Xφ ∧ Xψ
X (φ ∨ ψ) ≡ Xφ ∨ Xψ
X (φUψ) ≡ (XφUXψ)
¬Xφ ≡ X¬φ

F (φ ∨ ψ) ≡ Fφ ∨ Fψ
G (φ ∧ ψ) ≡ Gφ ∧ Gψ
¬Fφ ≡ G¬φ

(φ ∧ ψ)Uρ ≡ (φUρ) ∧ (ψUρ)
ρU(φ ∨ ψ) ≡ (ρUφ) ∨ (ρUψ)

FFφ ≡ Fφ
GGφ ≡ Gφ

CTL vs. LTL LTL (19 / 40)

Outline

1. Some Definitions And Notation

2. LTL

3. CTL

4. CTL vs. LTL

CTL vs. LTL CTL (20 / 40)

CTL BNF Syntax
A well-formed CTL formula, φ, is recursively defined by the BNF
formula (N.B., AX , AF , etc., are each single symbols, not pairs of
symbols):

φ ::= >
| ⊥
| p
| ¬φ
| φ ∧ φ
| φ ∨ φ
| AXφ ; A — for all paths
| AFφ
| AGφ
| φAUφ
| EXφ ; E — there exists a path
| EFφ
| EGφ
| φEUψ

CTL vs. LTL CTL (21 / 40)

CTL Semantics — the Basics

As for LTL, we now define the satisfaction relation. Again, this
satisfaction is with respect to a pair, but this time 〈M, s〉, a Kripke
structure and a state thereof. This change from path to state
creates a very different logic.

I M, s � >
I M, s 6� ⊥
I (M, s � p) if and only if (p ∈ L(s))

atomic propositions are satisfied when they are members of
the state’s labels

CTL vs. LTL CTL (22 / 40)

CTL Semantics — Boolean Combinations

As for LTL, the use of the Boolean operators ¬, ∧, and ∨ in CTL
formulae is a deliberate pun on their mathematical meanings.

I (M, s � ¬φ) if and only if (M, s 6� φ)

I (M, s � φ ∧ ψ) if and only if ((M, s � φ) ∧ (M, s � ψ))

I (M, s � φ ∨ ψ) if and only if ((M, s � φ) ∨ (M, s � ψ))

CTL vs. LTL CTL (23 / 40)

CTL Semantics — Temporal Operators, the A team

I (M, s � AXφ) if and only if (∀π such that π0 = s,M, π1 � φ)
for all paths starting at s, next time φ

I (M, s � AFφ) if and only if
(∀π such that π0 = s, ∃i such that M, πi � φ)

for all paths starting at s, eventually φ

I (M, s � AGφ) if and only if
(∀π such that π0 = s, ∀i M, πi � φ)

for all paths starting at s, always φ

I (M, s � φAUψ) if and only if
(∀π such that π0 = s, ∃i such that

(∀j < i(M, πj � φ)) ∧ (M, πi � ψ))
for all paths starting at s, φ until ψ

CTL vs. LTL CTL (24 / 40)

CTL Semantics — Temporal Operators, the E team

I (M, s � EXφ) if and only if (∃π such that π0 = s,M, π1 � φ)
there exists a path such that next time φ

I (M, s � EFφ) if and only if
(∃π such that π0 = s, ∃i such that M, πi � φ)

there exists a path such that eventually φ

I (M, s � EGφ) if and only if
(∃π such that π0 = s, ∀i M, πi � φ)

there exists a path such that always φ

I (M, s � φEUψ) if and only if
(∃π such that π0 = s, ∃i such that

(∀j < i(M, πj � φ)) ∧ (M, πi � ψ))
there exists a path such that φ until ψ

CTL vs. LTL CTL (25 / 40)

AXp

S = {s0, s1, s2, s3}
I = {s0}

R = {{s0, s1}
{s0, s2}
{s1, s1}
{s1, s3}
{s2, s0}
{s2, s3}
{s3, s0}}

L = {{s0, {p}}
{s1, {p, q}}
{s2, {p, r}}
{s3, {v}}}

M, s0 � AXp

p

p, r

s_0 s_1

s_2 s_3

p, q

v

CTL vs. LTL CTL (26 / 40)

EFv

S = {s0, s1, s2, s3}
I = {s0}

R = {{s0, s1}
{s0, s2}
{s1, s1}
{s1, s3}
{s2, s0}
{s2, s3}
{s3, s0}}

L = {{s0, {p}}
{s1, {p, q}}
{s2, {p, r}}
{s3, {v}}}

M, s0 � EFv

p

p, r

s_0 s_1

s_2 s_3

p, q

v

CTL vs. LTL CTL (27 / 40)

AG (p ∨ v)

S = {s0, s1, s2, s3}
I = S

R = {{s0, s1}
{s0, s2}
{s1, s1}
{s1, s3}
{s2, s0}
{s2, s3}
{s3, s0}}

L = {{s0, {p}}
{s1, {p, q}}
{s2, {p, r}}
{s3, {v}}}

M, s0 � AG (p ∨ v)

p

p, r

s_0 s_1

s_2 s_3

p, q

v

CTL vs. LTL CTL (28 / 40)

pEUv

S = {s0, s1, s2, s3}
I = S

R = {{s0, s1}
{s0, s2}
{s1, s1}
{s1, s3}
{s2, s0}
{s2, s3}
{s3, s0}}

L = {{s0, {p}}
{s1, {p, q}}
{s2, {p, r}}
{s3, {v}}}

M, s0 � pEUv

p

p, r

s_0 s_1

s_2 s_3

p, q

v

CTL vs. LTL CTL (29 / 40)

More CTL Semantics

I (M �M φ) if and only if ∀s ∈ I , (M, s � φ)
A model, or Kripke structure, satisfies a CTL formula, when
all its states do.

I (φ ≡ ψ) if and only if ∀M [(M �M φ)⇔ (M �M ψ)]
Two CTL formulae are equivalent when they are satisfied by
the same Kripke structures.

CTL vs. LTL CTL (30 / 40)

Some CTL Equivalences

AX (φ ∧ ψ) ≡ AXφ ∧ AXψ
EX (φ ∨ ψ) ≡ EXφ ∨ EXψ
¬AXφ ≡ EX¬φ

EF (φ ∨ ψ) ≡ EFφ ∨ EFψ
AG (φ ∧ ψ) ≡ AGφ ∧ AGψ
¬AFφ ≡ EG¬φ
¬EFφ ≡ AG¬φ

AFAFφ ≡ AFφ
EFEFφ ≡ EFφ
AGAGφ ≡ AGφ
EGEGφ ≡ EGφ

CTL vs. LTL CTL (31 / 40)

Outline

1. Some Definitions And Notation

2. LTL

3. CTL

4. CTL vs. LTL

CTL vs. LTL CTL vs. LTL (32 / 40)

Complexity

|φ| = n, |M| = m

CTL: O(mn)

LTL: O(m2n) — (and PSpace complete)

CTL vs. LTL CTL vs. LTL (33 / 40)

Intuitiveness

IBM Journal or Research and Development: Formal Verification
Made Easy, 1997

We found only simple CTL equations to be
comprehensible; nontrivial equations are hard to
understand and prone to error.

CAV’98: On the Fly Model Checking, 1998

CTL is difficult to use for most users and requires a
new way of thinking about hardware.

CTL vs. LTL CTL vs. LTL (34 / 40)

LTL and CTL Equivalence

A CTL formula φCTL and an LTL formula φLTL are equivalent if
they are satisfied by the same Kripke structures:

φCTL ≡ φLTL if and only if [(M �M φCTL)⇔ (M �M φLTL)]

CTL vs. LTL CTL vs. LTL (35 / 40)

E

Any CTL formula necessitating E cannot be expressed in LTL.

Example: EXp

CTL vs. LTL CTL vs. LTL (36 / 40)

G

For any CTL formula φCTL and LTL formula φLTL such that
φCTL ≡ φLTL,

AGφCTL ≡ GφLTL

CTL vs. LTL CTL vs. LTL (37 / 40)

AFAXp
FXp ≡ XFp ≡ AXAFp 6≡ AFAXp

The below example satisfies AXAFp, but not AFAXp. The latter of
these says that, starting in any state, along all paths we will
eventually reach a state, all of whose immediate successors satisfy
p.

s_0 s_1

s_2

s_3 s_4

p

p

CTL vs. LTL CTL vs. LTL (38 / 40)

AFAGp

FGp 6≡ AFAGp

The below example satisfies FGp, but not AFAGp. The latter says
that starting in any state, along all paths we will eventually reach a
part of the model from which all successors satisfy p. But consider
the path cycling through s0 — then s1 will always be a potential
successor.

p p

CTL vs. LTL CTL vs. LTL (39 / 40)

GFp ⇒ GFq
(GFp ≡ AGAFp), but (GFp ⇒ GFq) 6≡ (AGAFp ⇒ AGAFq)

While GFp ≡ AGAFp, the above implications are not equivalent.

The LTL formula is an implication about paths, but the two parts
of the CTL formula determine subsets of states independantly. The
below example satisfies AGAFp ⇒ AGAFq but not GFp ⇒ GFq.
The CTL is trivially satisfied, because AGAFp is not satisfied. The
LTL is not satisfied, because the path cycling through s0 forever
satisfies GFp but not GFq.

s_0 s_2s_1

p q

CTL vs. LTL CTL vs. LTL (40 / 40)

	Some Definitions And Notation
	LTL
	CTL
	CTL vs. LTL

