

Curry, Howard,

Two Kinds O' Proofs

- * Informal Proof
 - * Convincing natural language argument
- * Formal Proof
 - ✤ Built from a strict set of rules
 - * Syntactic manipulation
 - * "Proof Theory" proofs
 - Machine checkable / manipulatable

An Example Proof

Want to prove: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

* Lambda Calculus:

* Core Functional Language

***** Two typing rules:

Function Abstraction (x:A) $\vdash y:B$ $\vdash \lambda x: A. y: A \longrightarrow B$ Function Application x:A→B y:A x y: B

***** Lambda Calculus:

* Core Functional Language

***** Two typing rules:

Function Abstraction (x:A) $\vdash y:B$ $\vdash \lambda x: A. y: A \longrightarrow B$ Function Application x:A→B y:A x y: B

***** Lambda Calculus:

* Core Functional Language

***** Two typing rules:

Function Abstraction $(x:A) \vdash y:B$ $I \rightarrow$ $\vdash \lambda x:A.y:A \rightarrow B$

Function Application $x:A \rightarrow B \quad y:A \quad E \rightarrow$ xy: B

An Example Redux
$$u:(A \to (B \to C) w:A)$$
 $v:(A \to B) w:A$ $uw: B \to C$ $vw: B$ $uw: B \to C$ $vw: B$ $(uw)(vw):C$ $\lambda w.(uw)(vw):A \to C$ $\lambda vw.(uw)(vw):(A \to B) \to (A \to C)$ $\lambda vw.(uw)(vw):(A \to C) \to ((A \to B) \to (A \to C))$

Curry-Howard Isomorphism:

Any derivation in intuitionistic propositional logic corresponds to a typeable λ -term.

Curry–Howard Isomorphism:

Any derivation in intuitionistic propositional logic corresponds to a typeable λ -term.

We can show a formula is derivable if we can build a term with the corresponding type!

Two Sides

λ-Calculus

Propositional Logic

Type Variable Type Inhabitation Type Constructor Left (x:A)

(x:A, y:B)

Propositional variable Formula Proof Connective AvB (A+B) AAB (AXB)

L'Coq Proof Assistant

 Built on Calculus of (Co)-Inductive Constructions
Dependently-Type Lambda Calculus + Inductive Definitions

- * OCaml Implementation
 - * Extraction to ML
- * Goal: Build a term with the desired type
 - * Small, trusted type checker
 - DeBruijn Criterion

L'Example

***** Goal : \forall (A:Type) (a b c : list A), a++(b++c) = (a++b)++c.

L'Example

Goal : \forall (A:Type) (a b c : list A), a++(b++c) = (a++b)++c. Definition app assoc := list ind (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)(fun b c : list A => refl equal (b ++ c))(fun (a0 : A) (a1 : list A)(IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c) (b c : list A) =>let H := eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: 1) (refl equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) ineq ind r (fun 1 : list A => a0 :: a1 ++ b ++ c = 1) (eq ind r (fun 1 : list A => a0 :: 1 = a0 :: 1)(refl equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a

L'Example

Goal : \forall (A:Type) (a b c : list A), a++(b++c) = (a++b)++c. Definition app_assoc := list ind + b ++ c = (a0 ++ b) ++ c)(fun a0 : list A =>c:li (fun b c : list A => (fun (a0 : A) (a1 : li + c = (a1 ++ b) ++ c)(IHa : forall b c : (b c : list A) => let H := ++ b) ++ c = a0 :: 1) eq ind r (fun l : li (refl_equal (a0 IHa b c) in eq_ind_r (fun l :] + c = 1) => a0 (eq ind r (fun : 1) (refl_equa) 1 ++ b) + b c)) H) a Epigram Agda

Recall: Want to build functions

* Use program-generating functions called *tactics*

Backward reasoning:

AAB Combined into Proof Scripts 3 kinds Tactics:

Basic Inference Rules

- Derived Rules
- Decision Procedures

Recall: Want to build functions **W** Use program-generating functions called *tactics* ***** Backward reasoning: $\frac{A}{A \wedge B}$ * Combined into **Proof Scripts *** 3 kinds Tactics: **Basic** Inference Rules Derived Rules Decision Procedures

Recall: Want to build functions **W** Use program-generating functions called *tactics* **Backward reasoning:** AAR * Combined into **Proof Scripts 3** kinds Tactics: **Basic** Inference Rules Derived Rules Decision Procedures

L'Example Redux

```
Goal : \forall(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app assoc :=
list ind
  (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)
  (fun b c : list A => refl equal (b ++ c))
  (fun (a0 : A) (a1 : list A)
     (IHa : forall b c : list A, a1 ++ b ++ c = (a1 ++ b) ++ c)
     (b c : list A) =>
   let H :=
     eq ind r (fun 1 : list A => a0 :: (a1 ++ b) ++ c = a0 :: 1)
       (refl equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in
   eq ind r (fun 1 : list A => a0 :: a1 ++ b ++ c = 1)
     (eq ind r (fun 1 : list A => a0 :: 1 = a0 :: 1)
        (refl equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a
```

L'Example Redux

***** Goal : \forall (A:Type) (a b c : list A), a++(b++c) = (a++b)++c.

Lemma app_assoc : forall A (a b c : list A), a ++ b ++ c = (a ++ b) ++ c. induction a; simpl; intros. reflexivity. cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)). intros; rewrite H; rewrite IHa; reflexivity. rewrite IHa; reflexivity. Oed.
L'Example Redux

```
    Goal: ∀(A:Type) (a b c : list A), a++(b++c) = (a++b)++c.
Lemma app_assoc : forall A (a b c : list A), a ++ b ++ c = (a ++ b) ++ c.
    induction a; simpl; intros.
    reflexivity.
    cut (a :: (a0 ++ b) ++ c = a :: (a0 ++ b ++ c)).
    intros; rewrite H; rewrite IHa; reflexivity.
    rewrite IHa; reflexivity.
    Qed.
    Lemma Double_Even : forall n, Even (n + n).
```

```
induction n; simpl; try rewrite plus_comm; simpl; constructor.
exact IHn.
```

Qed.

```
2 subgoals
```

2 subgoals

a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c -> a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c

subgoal 2 is: a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

```
2 subgoals
```

```
2 subgoals
```

2 subgoals

a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c -> a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c Current Goa
c : list A
b:list A
IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
a0 : list A
a: A
А: Туре

subgoal 2 is:

a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c

```
2 subgoals
```

```
2 subgoals
```

2 subgoals

```
A : Type
 a : A
 a0 : list A
 IHa : forall b c : list A, a0 + b + c = (a0 + b) + c
 b : list A
 c : list A
  a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
  a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c
                                          Remaining
subgoal 2 is:
a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c
                                             Goals
```

```
2 subgoals
```

Modular Mechanized Metatheory

Ben Delaware

- Programming Languages change:
 - Java 5.0
 - GFJ
- New features added
- Standard practice:

- Programming Languages change:

- New features added
- Standard practice:

- Programming Languages change:

- New features added
- Standard practice:

- Programming Languages change:

- New features added
- Standard practice:

Java 4.0 Generics Diforeach Detc.

Defining a Language

- Arithmetic Expression Language (AL)

- Syntax:

- Semantics:
 - Assign meaning to expressions
 - Interpreter:

Operational Semantics

- Small-Step Operational Semantics
 - Set of transitions:
 - Presented as judgements

- Interpreters conform to these rules

Type Systems

- Approximation of run-time semantics
 - Typing Rules:

$$\underbrace{n \in \mathbb{N}}_{\vdash n: nat} \qquad \underbrace{ \vdash s_1: nat \quad \vdash s_2: nat}_{\vdash s_1 + s_2: nat}$$

- Disallow 'misbehaving' programs

Type Safety Proofs

- Want to prove approximation is correct
- Two key lemmas for AL:

- These are our metatheory proofs

- Proof assistants manage complexity
 - Coq, ACL2, Isabelle/HOL
- Reuse today:

- Proof assistants manage complexity
 - Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntox	Operational	Static	Proofs
Syntax	Semantics	Semantics	110015

- Proof assistants manage complexity
 - Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntax	Operational Semantics	Static Semantics	Proofs
Syntax	Semantics	System	Proots

- Proof assistants manage complexity
 - Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntox	Operational	Static	Proofs
Syntax	Semantics	Semantics	110015

- Proof assistants manage complexity
 - Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntax	Operational Semantics	Static Semantics	Proofs
Syntax Updates	Operational Semantics Updates	Static Semantics Updates	Proof Updates

Extending AL

- BAL = Booleans + AL
- New features make changes throughout

Building BAL

- BAL = Booleans + AL
- New features make changes throughout

Syntax	Dynamic Semantics	Static Semantics	Proofs
E ::= № E + E B if E then E else E E = E	$\frac{s_1 \rightarrow s_1'}{s_1 + s_2 \rightarrow s_1' + s_2}$ $\frac{s_2 \rightarrow s_2'}{s_1 + s_2 \rightarrow s_1 + s_2'}$ $\frac{n_1 + n_2 = n_3 n_1, n_2 \in \mathbb{N}}{n_1 + n_2 \rightarrow n_3}$ $if T then s_2 else s_3 \rightarrow s_2$ $if F then s_2 else s_3 \rightarrow s_3$ $\frac{s_1 \rightarrow s_1'}{if s_1 then s_2 else s_3 \rightarrow}$ $\frac{s_1 \rightarrow s_1'}{if s_1' then s_2 else s_3 \rightarrow}$ $\overline{T = T \rightarrow T} \qquad \overline{F = F \rightarrow T}$ $\overline{T = T \rightarrow T} \qquad \overline{F = F \rightarrow T}$ $n_1 = n_2 \rightarrow T \qquad n_1 \neq n_2 \rightarrow F$	$\underline{ \begin{array}{c} h \in \mathbb{N} \\ \vdash n: nat \\ \hline h : nat \\ \hline h : s_1 : nat \\ \vdash s_2 : nat \\ \hline h : s_1 + s_2 : nat \\ \hline h \in \mathbb{B} \\ \hline h : b: bool \\ \hline h : b: bool \\ \hline h : s_1 : bool \\ \hline h : s_2 : A \\ \vdash s_3 : A \\ \hline h : s_2 : A \\ \hline h : s_1 : A \\ \hline h : s_2 : A \\ \hline h : s_1 = s_2 : bool \\ \end{array}}$	Progress: $\forall s: S, \vdash s: A \rightarrow \exists s', s \rightarrow s' \lor V$ Value s. \vdots Updated Proof \vdots Qed.Preservation: $\forall s s': S, \vdash s: A \rightarrow s \rightarrow s' \rightarrow$ $\vdash s': A$ \vdots Updated Proof \vdots Updated Proof \vdots Qed.

Language Modules

- Feature = Module with updates

- Language = Composition of Modules

BAL = Boolean AL

Thursday, February 24, 2011

if E' then E' else E'

E' = E'

 \equiv

- First stab: "Wrap" Syntax

- First stab: "Wrap" Syntax

AL Syntax

- First stab: "Wrap" Syntax

Boolean Syntax

E' ::= | E | **B** | **if** E' **then** E' **else** E' | E' = E'

- Need inductive updates!

- Can't build (if T then 2 else 3) + 4

E ::=

| E **+** E

- First stab: "Wrap" Syntax

if E' then E' else E'

E' = E'

- Need inductive updates!
 - Can't build (if T then 2 else 3) + 4
- Nonterminals reference Final Language

- Solution: Leave definitions open:

- Final language closes the induction:

Final Syntax S::= $E_A(S) | E_B(S)$

Extensible Judgements

- Operational Semantics: Abstract transitions

- Final judgement closes the induction:

- Typing Rules : Abstract typing judgement

Z	\vdash s ₁ :nat \vdash s ₂ :nat
nat	$\vdash_{A} s_1 + s_2 : nat$

"Open" Proofs

- Extensible definitions need Extensible Proofs
 - Proofs over final language
- Module has proofs for its definitions
 - Subterms from abstract language
 - Progress uses ReduceEqual

ReduceEqual
$$s_1 = s_2$$
Value s_1 Value s_2 $s_1 = s_2 \rightarrow s_3$

Boolean Progress Progress_B (S, \rightarrow, \vdash) : $\vdash e : A$ e → e' v **Value** e Induction on s. Case B: Case if s_1 then s_2 else s_3 : Case $s_1 = s_2$: Use ReduceEqual Qed.

Externalizing Assumptions

- Properties of S become assumptions:

- To use proof of Boolean Progress,
 - Build proof of ReduceEqual as separate Lemma
 - Pass to Boolean Progress
Modular Inductive Proofs

- Progress can't be externalized

- Inductive Hypothesis fills the hole
 - Only use on subterms

- To build the final inductive proof,

- To build the final inductive proof,

I. Build external lemmas

ReduceEqual

Case $s \in E_A(S)$: Proof of **ReduceEqual**_A (S, \rightarrow) Case $s \in E_B(S)$: Proof of **ReduceEqual**_B (S, \rightarrow)

- To build the final inductive proof,
 - I. Build external lemmas
 - 2. Proceed by induction

```
ReduceEqual
```

Case $s \in E_A(\mathbf{S})$: Proof of **ReduceEqual**_A (\mathbf{S}, \rightarrow) Case $s \in E_B(\mathbf{S})$: Proof of **ReduceEqual**_B (\mathbf{S}, \rightarrow)

Boolean Progress

Progress : \forall s : E, \vdash s : E \rightarrow \exists s', s \rightarrow s' \lor Value s.

 $\begin{array}{l} \mbox{Induction on s} \\ \mbox{Case s} \in E_A({\textbf{S}}): \\ \mbox{Proof of } \textbf{Progress}_A({\textbf{S}}, \textbf{ReduceEqual}, \textbf{Progress}) \\ \mbox{Case s} \in E_B({\textbf{S}}): \\ \mbox{Proof of } \textbf{Progress}_B({\textbf{S}}, \textbf{ReduceEqual}, \textbf{Progress}) \\ \mbox{Qed.} \end{array}$

- To build the final inductive proof,
 - I. Build external lemmas
 - 2. Proceed by induction
 - 3. Pass IH to "close" the loop

Case $s \in E_A(S)$: Proof of **ReduceEqual**_A (S, \rightarrow) Case $s \in E_B(S)$: Proof of **ReduceEqual**_B (S, \rightarrow)

Boolean Progress

Progress : \forall s : E, \vdash s : E \rightarrow \exists s', s \rightarrow s' \lor Value s.

 $\begin{array}{l} \mbox{Induction on s} \\ \mbox{Case s} \in E_A({\textbf{S}}): \\ \mbox{Proof of } \textbf{Progress}_A({\textbf{S}}, \textbf{ReduceEqual}, \textbf{Progress}) \\ \mbox{Case s} \in E_B({\textbf{S}}): \\ \mbox{Proof of } \textbf{Progress}_B({\textbf{S}}, \textbf{ReduceEqual}, \textbf{Progress}) \\ \mbox{Qed.} \end{array}$

- To build the final inductive proof,
 - I. Build external lemmas
 - 2. Proceed by induction
 - 3. Pass IH to "close" the loop

Case $s \in E_A(S)$: Proof of **ReduceEqual**_A (S, \rightarrow) Case $s \in E_B(S)$: Proof of **ReduceEqual**_B (S, \rightarrow)

Boolean Progress

Progress : \forall s : E, \vdash s : E \rightarrow \exists s', s \rightarrow s' \lor Value s.

 $\begin{array}{l} \mbox{Induction on s} \\ \mbox{Case } s \in E_A({\textbf{S}}): \\ \mbox{Proof of } \textbf{Progress}_A({\textbf{S}}, \textbf{ReduceEqual}, \textbf{Progress}) \\ \mbox{Case } s \in E_B({\textbf{S}}): \\ \mbox{Proof of } \textbf{Progress}_B({\textbf{S}}, \textbf{ReduceEqual}, \textbf{Progress}) \\ \mbox{Qed.} \end{array}$

```
-Coq checks proper IH use
```

Language Variations

- Can build 3 languages:

- Features can interact:

- Interactions are also features:

Language Variations

- Can build 3 languages:

- Features can interact:

- Interactions are also features:

Language Variations

- Can build 3 languages:

- Features can interact:

- Interactions are also features:

More Updates

Thursday, February 24, 2011

Contributions

- Developed technique for extensible language design

- Update syntax, semantics, and proofs
 - Add new definitions
 - Update existing definitions
 - Reuse existing Proofs
- Modules independently mechanically verifiable
- ECOOP paper under construction
 - Builds GFJ + Interfaces w/ our techniques

Questions?

Related Work

- R. Stärk, J. Schmid, and E. Börger. Java and the java virtual machine definition, verification, validation.
- P. D. Mosses. Modular structural operational semantics.
- A. Chlipala. A verified compiler for an impure functional language.