Curry,
Howard, Cog

Two Kinds O' Proofs

\% Informal Proof

㸚 Convincing natural language argument

* Formal Proof
* Built from a strict set of rules
* Syntactic manipulation
**"Proof Theory" proofs
* Machine checkable / manipulatable

A Proof Theory

\% Axioms:

$$
\overline{\mathbf{T}}
$$

\% Inference Rules:

* Build Derivations

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))
\end{gathered}
$$

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
\frac{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \mathrm{~A}^{\mathrm{w}}}{\frac{\mathrm{~B} \rightarrow \mathrm{C}}{(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}} \frac{\frac{\mathrm{C}}{\mathrm{~B}} \mathrm{~A}^{\mathrm{A} \rightarrow \mathrm{C}}}{}{ }^{\mathrm{w}} \\
\frac{\mathrm{~B}^{\mathrm{v}} \mathrm{~A}^{\mathrm{w}}}{(\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})} \\
\frac{\mathrm{A}}{(\mathrm{~A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))^{\mathrm{w}}}
\end{gathered}
$$

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
\begin{array}{c}
(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))
\end{array} \\
\frac{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \quad \mathrm{~A}^{\mathrm{w}}}{\mathrm{~B} \rightarrow \mathrm{C}} \mathbf{E} \rightarrow \frac{(\mathrm{~A} \rightarrow \mathrm{~B})^{\mathrm{v}} \mathrm{~A}^{\mathrm{w}}}{\mathrm{~B}} \\
\frac{\mathrm{C}}{\mathrm{~A} \rightarrow \mathrm{C}^{\mathrm{w}}} \\
\frac{\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})}{}{ }^{\mathrm{v}} \\
\left(\mathrm{~A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))^{\mathrm{w}}\right.
\end{gathered}
$$

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
\begin{array}{c}
(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))
\end{array} \\
\frac{\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \mathrm{~A}^{\mathrm{w}}}{\mathrm{~B} \rightarrow \mathrm{C}} \frac{(\mathrm{~A} \rightarrow \mathrm{~B})^{\mathrm{v}}}{\mathrm{~B}} \mathrm{~A}^{\mathrm{w}} \\
\frac{\mathrm{C}}{\mathrm{~A} \rightarrow \mathrm{C}} \\
\\
\frac{\mathrm{w}}{(\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})} \\
\frac{\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}{\mathrm{v}}
\end{gathered}
$$

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
\frac{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \mathrm{~A}^{\mathrm{w}}}{\frac{\mathrm{~B} \rightarrow \mathrm{C}}{(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}} \frac{\frac{\mathrm{C}}{\mathrm{~A} \rightarrow \mathrm{~A} \rightarrow \mathrm{~B})^{\mathrm{v}} \mathrm{~A}^{\mathrm{w}}}}{}+\mathrm{E} \rightarrow \\
\frac{\mathrm{~A}^{\mathrm{w}}}{(\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})} \mathrm{v} \\
\frac{\mathrm{~A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}{\mathrm{n}} \mathrm{u}
\end{gathered}
$$

An Example Proof

$$
\begin{aligned}
& \text { Want to prove: } \\
& (\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})) \\
& \xrightarrow{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \quad \mathrm{~A}^{\mathrm{w}}} \\
& \mathrm{~B} \rightarrow \mathrm{C} \\
& \text { C } \\
& {\underset{\mathrm{A} \rightarrow \mathrm{C}}{\mathrm{C}}}^{\mathrm{w}} \boldsymbol{\rightarrow} \\
& \overline{\mathrm{~A}} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}) \\
& (\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})) ~ ' u
\end{aligned}
$$

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
\frac{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \mathrm{~A}^{\mathrm{w}}}{\frac{\mathrm{~B} \rightarrow \mathrm{C}}{(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}} \frac{\frac{\mathrm{C}}{\mathrm{~A} \rightarrow \mathrm{~A}^{\mathrm{w}}}}{} \\
\frac{(\mathrm{~A} \rightarrow \mathrm{~B})^{\mathrm{v}} \mathrm{~A}^{\mathrm{w}}}{(\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})} \mathrm{v} \mathrm{I} \rightarrow \\
\frac{(\mathrm{~A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}{\mathrm{n}}
\end{gathered}
$$

An Example Proof

$$
\begin{gathered}
\text { Want to prove: } \\
\frac{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))}{} \\
\frac{(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}))^{\mathrm{u}} \mathrm{~A}^{\mathrm{w}}}{\mathrm{~B} \rightarrow \mathrm{C}} \frac{(\mathrm{~A} \rightarrow \mathrm{~B})^{\mathrm{v}} \mathrm{~A}^{\mathrm{w}}}{\mathrm{~B}} \\
\frac{\mathrm{C}}{\mathrm{~A} \rightarrow \mathrm{C}^{\mathrm{w}}} \\
\frac{\mathrm{~A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})^{\mathrm{v}}}{(\mathrm{~A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))^{\mathrm{n}}}
\end{gathered}
$$

Something Completely Different

* Lambda Calculus:

* Core Functional Language
\% Two typing rules:

$$
\begin{gathered}
\text { Function } \\
\text { Abstraction } \\
\frac{(\mathrm{x}: \mathrm{A}) \cdot \mathrm{y}: \mathrm{B}}{1-\lambda \mathrm{x}: \mathrm{A} \cdot \mathrm{y}: \mathrm{A} \rightarrow \mathrm{~B}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Function } \\
\text { Application } \\
\frac{\mathrm{x}: \mathrm{A} \rightarrow \mathrm{~B} \quad \mathrm{y}: \mathrm{A}}{} \mathrm{xy:} \mathrm{~B}
\end{gathered}
$$

Something Completely Different

* Lambda Calculus:

* Core Functional Language
\% Two typing rules:

$$
\begin{gathered}
\text { Function } \\
\text { Abstraction } \\
\frac{(\mathrm{x}: \mathrm{A}) \text {) } \mathrm{y}: \mathrm{B}}{\text { r } \lambda \mathrm{x}: \mathrm{A} \cdot \mathrm{y}: \mathrm{A} \rightarrow \mathrm{~B}}
\end{gathered}
$$

Function Application

$$
x: A \rightarrow B \quad y: A
$$

$$
x y: B
$$

Something Completely Different

* Lambda Calculus:

* Core Functional Language
\% Two typing rules:

> Function
> Abstraction
> $\frac{(\mathrm{x}: \mathrm{A}) \text { - }: \mathrm{B}}{-\lambda \mathrm{x}: \mathrm{A} \cdot \mathrm{y}: \mathrm{A} \rightarrow \mathrm{B}}$

Function Application

$$
\frac{x: A \rightarrow B \text { y:A }}{x y: B} E
$$

An Example Redux

$$
\begin{gathered}
\frac{\mathrm{u}:(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C}) \mathrm{w}: \mathrm{A}}{\mathrm{uw}: \mathrm{B} \rightarrow \mathrm{C}} \frac{\mathrm{v}:(\mathrm{A} \rightarrow \mathrm{~B}) \mathrm{w}: \mathrm{A}}{\mathrm{vw}: \mathrm{B}} \\
\frac{\mathrm{uw}_{2}(\mathrm{vw}): \mathrm{C}}{(\mathrm{vw} \cdot(\mathrm{uw})(\mathrm{vw}): \mathrm{A} \rightarrow \mathrm{C}} \\
\frac{\lambda \mathrm{vw} \cdot(\mathrm{uw})(\mathrm{vw}):(\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C})}{} \\
\lambda \mathrm{uvw} \cdot(\mathrm{uw})(\mathrm{vw}):(\mathrm{A} \rightarrow(\mathrm{~B} \rightarrow \mathrm{C})) \rightarrow((\mathrm{A} \rightarrow \mathrm{~B}) \rightarrow(\mathrm{A} \rightarrow \mathrm{C}))
\end{gathered}
$$

Two Coins

λ-Calculus

Propositional Logic

$$
\mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B}, \mathrm{y}: \mathrm{A}+\mathrm{fy}: \mathrm{B}
$$

Application takes A's to B's

$\frac{\text { A } \quad \mathrm{A} \rightarrow \mathrm{B}}{\mathrm{B}}$

Modus Ponens derives B

Two Coins?

λ-Calculus

Propositional Logic

$\frac{\mathrm{A} \quad \mathrm{A} \rightarrow \mathrm{B}}{\mathrm{B}}$

Modus Ponens derives B

Two Coins?

Two Sides

Curry-Howard Isomorphism:

Any derivation in intuitionistic propositional logic corresponds to a typeable λ-term.

Two Sides

Curry-Howard Isomorphism:

Any derivation in intuitionistic propositional logic corresponds to a typeable λ-term.

We can show a formula is derivable if we can build a term with the corresponding type!

Two Sides!

Two Sides!

λ-Calculus

Propositional Logic

Two Sides!

λ-Calculus

Type Variable

Propositional Logic

Propositional variable

Two Sides!

λ-Calculus

Type Variable
Type

Propositional Logic

Propositional variable
Formula

λ-Calculus

Type Variable Type
Inhabitation

Propositional Logic

Propositional variable
Formula
Proof

Two Sides?

λ-Calculus

Type Variable Type
Inhabitation
Type Constructor
Left (x:A)
(x:A, y:B)

Propositional Logic

Propositional variable
Formula
Proof
Connective
$\mathrm{A} v \mathrm{~B} \quad(\mathrm{~A}+\mathrm{B})$
$A \wedge B \quad(A \times B)$

L'Coq Proof Assistant

* Built on Calculus of (Co)-Inductive Constructions
* Dependently-Type Lambda Calculus + Inductive Definitions
* OCaml Implementation
* Extraction to ML
* Goal: Build a term with the desired type
* Small, trusted type checker
* DeBruijn Criterion

L'Example

L'Example

\% Goal : \forall (A:Type) (a b c : list A), $a++(b++c)=(a++b)++c$.

L'Example

```
Goal : }\forall(\textrm{A}:\mathrm{ Type ) (a b c : list A), a++(b++c) = (a++b)++c.
Definition app_assoc :=
list_ind
    (fun a0 : list A => forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c)
    (fun b c : list A => refl_equal (b ++ c))
    (fun (a0 : A) (a1 : list A)
        (IHa : forall b c : list A, al ++ b ++ c = (a1 ++ b) ++ c)
        (b c : list A) =>
    let H :=
        eq_ind_r (fun l : list A => a0:: (al ++ b) ++ c = a0 :: l)
            (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c) in
    eq_ind_r (fun l : list A => a0 : : al ++ b ++ c = l)
        (eq_ind_r (fun l : list A => a0 :: l = a0 :: l)
            (refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a
```


L'Example

\% Goal : $\forall(\mathrm{A}$:Type $)(\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{:} \mathrm{list} \mathrm{A}), \mathrm{a}++(\mathrm{b}++\mathrm{c})=(\mathrm{a}++\mathrm{b})++\mathrm{c}$. Definition app_assoc :=

Tactics

** Recall: Want to build functions

* Use program-generating functions called tactics
* Backward reasoning:

A^B
 范 Combined into Proof Scripts
 \% 3 kinds Tactics:

* Basic Inference Rules
* Derived Rules
* Decision Procedures

Tactics

** Recall: Want to build functions

* Use program-generating functions called tactics

湤 Backward reasoning:

$$
\frac{A}{A \wedge B}
$$

: Combined into Proof Scripts
\% 3 kinds Tactics:

* Basic Inference Rules
* Derived Rules
* Decision Procedures

Tactics

** Recall: Want to build functions

* Use program-generating functions called tactics
* Backward reasoning:
$\frac{A \quad B}{A \wedge B}$
范 Combined into Proof Scripts
\% 3 kinds Tactics:
** Basic Inference Rules
* Derived Rules
* Decision Procedures

L'Example Redux

\% Goal : \forall (A:Type) (a b c : list A), $a++(b++c)=(a++b)++c$. Definition app_assoc := list_ind
(fun a 0 : list $\mathrm{A}=>$ forall b c : list $\mathrm{A}, \mathrm{a} 0++\mathrm{b}++\mathrm{c}=(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$)
(fun b c : list $A=>$ refl_equal (b ++ c))
(fun (a0 : A) (a1 : list A)
(IHa : forall b c : list A, $\mathrm{al}++\mathrm{b}++\mathrm{c}=(\mathrm{al} \mathrm{++} \mathrm{~b})$ ++ c$)$
(b c : list A) =>
let H :=
eq_ind_r (fun l : list A => a0 :: (a1 ++ b) ++ c = a0 :: l)
(refl_equal (a0 :: (al ++ b) ++ c)) (IHa b c) in
eq_ind_r (fun l : list $A=>$ a0 : : al ++ b ++ c = l)
(eq_ind_r (fun l : list A => a0 :: l = a0 :: l)
(refl_equal (a0 :: (a1 ++ b) ++ c)) (IHa b c)) H) a

L'Example Redux

* Goal : $\forall(\mathrm{A}:$ Type $)(\mathrm{abc}$: list A), $\mathrm{a}++(\mathrm{b}++\mathrm{c})=(\mathrm{a}++\mathrm{b})++\mathrm{c}$. Lemma app assoc : forall $A(\mathrm{a} b \mathrm{c}: \operatorname{list} \mathrm{A})$, $\mathrm{a}++\mathrm{b}++\mathrm{c}=(\mathrm{a}++\mathrm{b})++\mathrm{c}$. induction a; simpl; intros.
reflexivity.
cut $(\mathrm{a}:(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:(\mathrm{a}=++\mathrm{b}++\mathrm{c}))$.
intros; rewrite H; rewrite IHa; reflexivity.
rewrite IHa; reflexivity.
Qed.

L'Example Redux

* Goal : $\forall(\mathrm{A}:$ Type $)(\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{:} \mathrm{list} \mathrm{A)} \mathrm{a}+,+(\mathrm{b}++\mathrm{c})=(\mathrm{a}++\mathrm{b})++\mathrm{c}$.

Lemma app_assoc : forall $A(\mathrm{a} b \mathrm{c}: \operatorname{list} \mathrm{A})$, $\mathrm{a}++\mathrm{b}++\mathrm{c}=(\mathrm{a}++\mathrm{b})++\mathrm{c}$. induction a; simpl; intros.
reflexivity.
cut $(\mathrm{a}:(\mathrm{aO}++\mathrm{b})++\mathrm{c}=\mathrm{a}:(\mathrm{a} 0++\mathrm{b}++\mathrm{c}))$.
intros; rewrite H; rewrite IHa; reflexivity.
rewrite IHa; reflexivity.
Qed.

Lemma Double_Even : forall n, Even (n + n).
induction n; simpl; try rewrite plus_comm; simpl; constructor.
exact IHn.
Qed.

Proof Buffer

2 subgoals

A : Type
a : A
a0 : list A
IHa : forall $b \mathrm{c}:$ list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b : list A
c : list A
===========================
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}->$
$\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}=\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$
subgoal 2 is:
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

```
A : Type
a : A
```


Context

```
a0 : list A
IHa : forall \(b \mathrm{c}:\) list \(\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}\)
b : list A
c : list A
```

============================

```
a :: (a0 ++ b) ++ c = a :: a0 ++ b ++ c ->
a :: a0 ++ b ++ c = a :: (a0 ++ b) ++ c
```

subgoal 2 is:
$\mathrm{a}::(\mathrm{aO}++\mathrm{b})++\mathrm{c}=\mathrm{a}: \mathrm{a}: \mathrm{a}++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

A : Type
a : A
a0 : list A
IHa : forall $b \mathrm{c}:$ list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b : list A
c : list A
===========================
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}->$
$\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}=\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$
subgoal 2 is:
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

A : Type
a : A
a0 : list A
IHa : forall $b \mathrm{c}:$ list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b : list A
c : list A
===========================
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}->$
$\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}=\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$
subgoal 2 is:
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

A ：Type
a ：A
a0 ：list A
IHa ：forall b c ：list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b ：list A
c ：list A

```
ニニニニニニニニニニニニニニニニニニニニニニニニニニニ=
a :: (a0 ++ b) ++ c = a : : a0 ++ b ++ c ->
a :: a0 ++ b ++ c=a :: (a0 ++ b) ++ c Current Coal
```

subgoal 2 is：
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

A : Type
a : A
a0 : list A
IHa : forall $b \mathrm{c}:$ list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b : list A
c : list A
===========================
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}->$
$\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}=\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$
subgoal 2 is:
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

A : Type
a : A
a0 : list A
IHa : forall $b \mathrm{c}:$ list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b : list A
c : list A
===========================
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}->$
$\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}=\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$
subgoal 2 is:
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Proof Buffer

2 subgoals

```
A : Type
a : \
a0 : list A
IHa : forall b c : list A, a0 ++ b ++ c = (a0 ++ b) ++ c
b - list A
C : list A
============================
```



```
a :: a0 ++ b ++ c=a :: (a0 ++ b) ++c
```

subgoal 2 is:
Remaining
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$ Goals

Proof Buffer

2 subgoals

A : Type
a : A
a0 : list A
IHa : forall $b \mathrm{c}:$ list $\mathrm{A}, \mathrm{aO}++\mathrm{b}++\mathrm{c}=(\mathrm{aO}++\mathrm{b})++\mathrm{c}$
b : list A
c : list A
===========================
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}->$
$\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}=\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}$
subgoal 2 is:
$\mathrm{a}::(\mathrm{a} 0++\mathrm{b})++\mathrm{c}=\mathrm{a}:: \mathrm{a} 0++\mathrm{b}++\mathrm{c}$

Modular Mechanized Metatheory
 Ben Delaware

Today's Problem

- Programming Languages change:
- Java 5.0
- GFJ
- New features added
- Standard practice:
- Our goal: Extensible Definitions

Today's Problem

- Programming Languages change:

- New features added
- Standard practice:

Java 5.0

- Our goal: Extensible Definitions

Today's Problem

- Programming Languages change:

- New features added
- Standard practice:

Java 5.0

- Our goal: Extensible Definitions

Today's Problem

- Programming Languages change:
$\begin{array}{ll}\text { - Java } 5.0 & =\text { Java } 4.0 \text { Generics } \text { Sforeach Setc. } \\ \text { - GFJ } & =\text { FJ Core SGenerics }\end{array}$
- New features added
- Standard practice:

Java 5.0

- Our goal: Extensible Definitions

Defining a Language

- Arithmetic Expression Language (AL)
- Syntax:

$$
E::=E+E \mid N
$$

- Semantics:
- Assign meaning to expressions
- Interpreter:

$$
\text { eval }(" 5+6 ")=1 \mid
$$

Operational Semantics

- Small-Step Operational Semantics
- Set of transitions:
- Presented as judgements

- Interpreters conform to these rules

Type Systems

- Approximation of run-time semantics
- Typing Rules:

```
|
```

$$
\frac{\vdash \mathrm{s}_{1}: \text { nat } \vdash_{\mathrm{s}_{2}}: \text { nat }}{\vdash \mathrm{s}_{1}+\mathrm{s}_{2}: \text { nat }}
$$

- Disallow ‘misbehaving' programs

Type Safety Proofs

- Want to prove approximation is correct
- Two key lemmas for AL:

- These are our metatheory proofs

Complete Language

- Full language definition:

Syntax	Operational Semantics	Type System	Proofs

- Proof assistants manage complexity
- Coq, ACL2, Isabelle/HOL
- Reuse today:

Complete Language

- Full language definition:

Syntax	Operational Semantics	Type System	Proofs

- Proof assistants manage complexity
- Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntax
Operational Semantics Semantics
Proofs

Complete Language

- Full language definition:

Syntax	Operational Semantics	Type System	Proofs

- Proof assistants manage complexity
- Coq, ACL2, Isabelle/HOL
- Reuse today:

| Syntax | Operational
 Semantics | Static | Semantics |
| :---: | :---: | :---: | :---: | Proofs

Complete Language

- Full language definition:

Syntax	Operational Semantics	Type System	Proofs

- Proof assistants manage complexity
- Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntax
Operational Semantics Semantics
Proofs

Complete Language

- Full language definition:

Syntax \begin{tabular}{c|c}
Operational

Semantics

Type

System
\end{tabular}\quad P

- Coq, ACL2, Isabelle/HOL
- Reuse today:

Syntax	Operational Semantics	Static Semantics	Proofs
Syntax Updates	Operational Semantics Updates	Static Semantics Updates	Proof Updates

Extending AL

- BAL = Booleans + AL
- New features make changes throughout

Syntax	Dynamic Semantics	Static Semantics	Proofs
$\begin{aligned} & E::= \\ & \mid: N \\ & \mid E+E \end{aligned}$	$\begin{gathered} \frac{s_{1} \rightarrow s_{1}^{\prime}}{\mathrm{s}_{1}+\mathrm{s}_{2} \rightarrow \mathrm{~s}_{1}^{\prime}}+\mathrm{s}_{2} \\ \frac{s_{2} \rightarrow s_{2}^{\prime}}{\mathrm{s}_{1}+\mathrm{s} 22^{s_{1}}+\mathrm{s}_{2}^{\prime}} \\ \frac{\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}_{3} \quad n_{1}, \mathrm{n}_{2} \in \mathrm{~N}}{\mathrm{n}_{1}+\mathrm{n}_{2} \rightarrow \mathrm{n}_{3}} \end{gathered}$	$\begin{gathered} \frac{\mathrm{n} \in \mathrm{~N}}{\vdash \mathrm{n}: \text { nat }} \\ \qquad \frac{\mathrm{s}_{1}: \text { nat }}{\vdash \mathrm{s}_{1}+\mathrm{s}_{2}: \text { nat }} \mathrm{nat} \end{gathered}$	Progress: $\forall \mathrm{s}: \mathrm{S}, \vdash \mathrm{s}: \mathrm{A} \rightarrow \exists \mathrm{a} \mathrm{s}^{\prime}, \mathrm{s} \rightarrow \mathrm{s}^{\prime}$ v Value s. \vdots Proof \vdots Qed. Preservation: $\forall \mathrm{s} \mathrm{s}^{\prime}: \mathrm{S}, \stackrel{\mathrm{s}: \mathrm{s}: \mathrm{A} \rightarrow \mathrm{s} \rightarrow \mathrm{s}^{\prime} \rightarrow}{\vdash \mathrm{s}^{\prime}: \mathrm{A}}$ \vdots Proof \vdots Qed.

Building BAL

- $\mathbf{B A L}$ = Booleans + AL
- New features make changes throughout

Syntax	Dynamic Semantics	Static Semantics	Proofs
$\begin{aligned} & E::= \\ & \mid N \\ & \mid E+E \\ & \mid B \\ & \text { if E then E else E } \\ & E=E \end{aligned}$		$\frac{\mathrm{n} \in \mathrm{N}}{\vdash \mathrm{n}: \text { nat }}$ $\vdash \mathrm{s}_{1}:$ nat $\vdash \mathrm{s}_{2}:$ nat $\vdash \mathrm{s}_{1}+\mathrm{s}_{2}:$ nat $\frac{\mathrm{b} \in \mathbb{B}}{\vdash \mathrm{b}: \text { bool }}$ $\vdash_{\mathrm{s}_{1}: \text { bool } \quad \vdash \mathrm{s}_{2}: \mathrm{A} \vdash \mathrm{s}_{3}: \mathrm{A}}^{\vdash \mathrm{fif}_{1} \text { then } \mathrm{s}_{2} \text { else } \mathrm{s}_{3}: \mathrm{A}}$ $\frac{\vdash \mathrm{s}_{1}: \mathrm{A} \quad \vdash \mathrm{s}_{2}: \mathrm{A}}{\vdash \mathrm{s}_{1}=\mathrm{s}_{2}: \text { bool }}$	Progress: $\forall \mathrm{s}: \mathrm{S}, \vdash \mathrm{s}: \mathrm{A} \rightarrow \mathrm{A} \rightarrow \mathrm{s}^{\prime} \mathrm{s} \rightarrow \mathrm{s}^{\prime} \mathrm{v}$ Values. \vdots Updated Proof \vdots Qed. Preservation: $\forall \mathrm{s} \mathrm{s}^{\prime}: \mathrm{S}, \vdash \mathrm{s}: \mathrm{A} \rightarrow \mathrm{s} \rightarrow \mathrm{s}^{\prime} \rightarrow$ $\vdash \mathrm{s}^{\prime}: \mathrm{A}$ \vdots Updated Proof \vdots Qed.

Language Modules

- Feature $=$ Module with updates

- Language $=$ Composition of Modules

Extensible Syntax

AL Syntax

- $\mathrm{E}::=$

BAL Syntax

Extensible Syntax

- First stab: "Wrap" Syntax

AL Syntax

• $::=$
$\mid N$
$\mid E+E$

BAL Syntax
$=$

Extensible Syntax

- First stab: "Wrap" Syntax

AL Syntax

- $\begin{aligned} & \mathrm{E}::= \\ & \mid \\ & \mid= \\ & \\ & \mid \mathrm{E}+\mathrm{E}\end{aligned}$

BAL Syntax?
$=$

Extensible Syntax

- First stab: "Wrap" Syntax

Extensible Syntax

- First stab: "Wrap" Syntax

- Nonterminals reference Final Language

Extensible Syntax

- Solution: Leave definitions open:

- Final language closes the induction:

$$
\begin{aligned}
& \text { Final Syntax } \\
& \mathbf{S}::=\mathrm{E}_{\mathrm{A}}(\mathbf{S}) \mid \mathrm{E}_{\mathrm{B}}(\mathbf{S})
\end{aligned}
$$

Extensible Judgements

- Operational Semantics:Abstract transitions

$$
\mathrm{S}_{1}+{\mathrm{S} 1 \rightarrow \mathrm{~S}_{1}}_{\mathrm{S}_{2} \rightarrow \mathrm{~A}_{1}}{ }^{\prime}+\mathrm{S}_{2}
$$

$$
\mathrm{S}_{1}+\frac{\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2}^{\prime}}{\mathrm{S}_{2} \rightarrow \mathrm{~A} \mathrm{~S}_{1}}+\mathrm{S}_{2}^{\prime}
$$

- Final judgement closes the induction:

$$
\frac{\mathrm{S} \rightarrow \mathrm{~A}^{\prime}}{\mathrm{S} \rightarrow \mathrm{~S}^{\prime}}
$$

- Typing Rules :Abstract typing judgement \square

$$
\frac{\vdash_{\mathrm{s}_{1}}: \text { nat } \vdash_{\mathrm{s}_{2}}: \text { nat }}{\vdash_{\mathrm{A}} 1}+\mathrm{s} 2_{2}: \text { nat }
$$

"Open" Proofs

- Extensible definitions need Extensible Proofs
- Proofs over final language
- Module has proofs for its definitions
- Subterms from abstract language
- Progress uses ReduceEqual
ReduceEqual
$\frac{s_{1}=s_{2} \quad \text { Value } s_{1} \text { Value } s_{2}}{}$

Boolean Progress
Progressb $(\mathbf{S}, \rightarrow, \vdash):$
$\frac{\vdash \mathrm{e}: \mathrm{A}}{\mathrm{e} \rightarrow \mathrm{e}^{\prime} \vee \text { Value } e}$
Induction on s .
Case R:

Case if s_{1} then S_{2} else s_{3} :
Case $\mathrm{s}_{1}=\mathrm{s}_{2}$:
Use ReduceEqual
Qed.

Externalizing Assumptions

- Properties of S become assumptions:

Boolean Progress
Progressb $(\mathbf{S}, \rightarrow, \vdash):$
$\vdash \mathrm{e}: \mathrm{A}$ ReduceEqual
$e \rightarrow e^{\prime} \vee$ Value e
Proof using ReduceEqual
Qed.

- To use proof of Boolean Progress,
- Build proof of ReduceEqual as separate Lemma
- Pass to Boolean Progress

Modular Inductive Proofs

- Progress can't be externalized

- Inductive Hypothesis fills the hole
- Only use on subterms

Building Inductive Proofs

Building Inductive Proofs

- To build the final inductive proof,

Building Inductive Proofs

- To build the final inductive proof, I. Build external lemmas

ReduceEqual

```
Case s}\in\mp@subsup{E}{A}{A}\mathbf{S
    Proof of ReduceEqual_
Case s}\in\mp@subsup{E}{B}{}\mathbf{R
    Proof of ReduceEqualm (S, }->\mathrm{ )
```


Building Inductive Proofs

- To build the final inductive proof,
I. Build external lemmas

2. Proceed by induction

ReduceEqual

Case $\mathrm{s} \in \mathrm{E}_{\mathrm{A}} \mathbf{S}$
Proof of ReduceEquall $(\mathbf{S}, \rightarrow)$ Case $s \in \mathrm{E}_{\mathrm{B}} \mathbf{S}$
Proof of ReduceEqual ${ }_{\mathbf{B}}(\mathbf{S}, \rightarrow)$

Boolean Progress

```
Progress: }\forall\mathbf{s}:\mathbf{E,}\vdash\mathbf{s}:\mathbf{E}->\exists\mp@subsup{s}{}{\prime},\mathbf{s}->\mp@subsup{s}{}{\prime}\veeV\mathrm{ Value s.
Induction on s
    Case s }\in\mp@subsup{\textrm{E}}{\mathbf{A}}{(\mathbf{S}}\mathbf{S}\mathrm{ :
        Proof of Progressa(S, ReduceEqual, Progress)
    Case s }\in\mp@subsup{E}{B}{(}(\mathbf{S})
    Proof of Progressb(S, ReduceEqual, Progress)
                        Qed.
```


Building Inductive Proofs

- To build the final inductive proof,
I. Build external lemmas

2. Proceed by induction
3. Pass IH to "close" the loop

ReduceEqual

Case $\mathrm{s} \in \mathrm{E}_{\mathrm{A}} \mathbf{S}$
Proof of ReduceEqual $\mathbf{A}(\mathbf{S}, \rightarrow)$ Case $s \in \mathrm{E}_{\mathrm{B}} \mathbf{S}$
Proof of ReduceEqual $\mathbf{B}_{\mathbf{(S}}^{\mathbf{S}} \rightarrow$)

Boolean Progress

```
Progress: \(\forall \mathbf{s}: \mathbf{E}, \vdash \mathbf{s}: \mathbf{E} \rightarrow \exists \mathbf{s}^{\prime}, \mathbf{s} \rightarrow \mathbf{s}^{\prime} \vee\) Values.
Induction on s
    Case s \(\in \mathrm{E}_{\mathrm{A}}(\mathbf{S})\) :
        Proof of Progressa(S, ReduceEqual, Progress)
    Case \(s \in \mathrm{~EB}_{\mathrm{B}}(\mathbf{S})\) :
        Proof of Progressb(S, ReduceEqual, Progress)
                        Qed.
```


Building Inductive Proofs

- To build the final inductive proof,
I. Build external lemmas

2. Proceed by induction
3. Pass IH to "close" the loop

ReduceEqual

```
Case s}\in\mp@subsup{\textrm{E}}{\textrm{A}}{}\mathbf{S
```

 Proof of ReduceEquall \((\mathbf{S}, \rightarrow)\)
 Case $s \in \mathrm{E}_{\mathrm{B}} \mathbf{S}$

Proof of ReduceEqual ${ }_{\mathbf{B}}(\mathbf{S}, \rightarrow)$

Boolean Progress

```
Progress: \(\forall \mathbf{s}: \mathbf{E}, \vdash \mathbf{s}: \mathbf{E} \rightarrow \exists \mathbf{s}^{\prime}, \mathbf{s} \rightarrow \mathbf{s}^{\prime} \vee\) Values.
Induction on \(s\)
    Case s \(\in \mathrm{E}_{\mathrm{A}}(\mathbf{S})\) :
        Proof of Progressa(S, ReduceEqual, Progress)
    Case \(s \in \mathrm{E}_{\mathrm{B}}(\mathbf{S})\) :
        Proof of Progressb(S, ReduceEqual, Progress)
                        Qed.
```

- Coq checks proper IH use

Language Variations

- Can build 3 languages:

- Features can interact:

$$
\frac{n_{1}=n_{2} \quad n_{1}, n_{2} E}{n_{1}=n_{2} \rightarrow r}
$$

- Interactions are also features:

Language Variations

- Can build 3 languages:

- Features can interact:

$$
\frac{n_{1}=n_{2} \quad n_{1}, n_{2} E}{n_{1}=n_{2} \rightarrow \text { n }}
$$

- Interactions are also features:

Language Variations

- Can build 3 languages:

- Features can interact:

$$
\frac{\mathrm{n}_{1}=\mathrm{n}_{2} \quad \mathrm{n}_{1}, \mathrm{n}_{2} \in \mathbb{N}}{\mathrm{n}_{1}=\mathrm{n}_{2} \rightarrow \mathbf{T}}
$$

- Interactions are also features:

More Updates

FJ Expression Syntax		FJ • Generic Expression Syntax
	\longmapsto	$\begin{aligned} & \hline \mathrm{e}::=\mathrm{x} \\ & \mid \mathrm{e} . \mathrm{f} \\ & \mid \mathrm{e} \cdot \mathrm{~m}\langle\overline{\mathrm{~T}}\rangle^{\beta} \quad(\overline{\mathrm{e}}) \\ & \mid \text { new } \mathrm{C}\langle\overline{\mathrm{~T}}\rangle^{\beta} \quad(\overline{\mathrm{e}}) \\ & \mid\left(\mathrm{C}\langle\overline{\mathrm{~T}}\rangle^{\beta}\right) \\ & \mathrm{e} \end{aligned}$
FJ Subtyping $\quad \mathrm{T}<$: T		GFJ Subtyping $\Delta^{\delta} \vdash \mathrm{T}<: \mathrm{T}$
$\begin{gathered} \frac{\mathrm{S}<: \mathrm{T} \quad \mathrm{~T}<: \mathrm{V}}{\mathrm{~S}<: \mathrm{V}} \\ \text { (S-TRANS) } \\ \mathrm{T}<: \mathrm{T} \\ \frac{\text { class C extends } \mathrm{D}\{\ldots\}}{\mathrm{C}<: \mathrm{D}}(\mathrm{~S}-\mathrm{REFL}) \\ \frac{\text { S-DIR })}{} \end{gathered}$	\longmapsto	
FJ New Typing $\quad \Gamma \vdash \mathrm{e}: \mathrm{T}$		GFJ New Typing $\Delta ;{ }^{\delta} \Gamma \vdash \mathrm{e}: ~ \mathrm{~T}$
$\frac{\text { fields }(\mathrm{C})=\overline{\mathrm{D}} \overline{\mathrm{f}} \quad \Gamma \vdash \overline{\mathrm{e}}: \overline{\mathrm{C}} \quad \overline{\mathrm{C}}<: \overline{\mathrm{D}}}{\Gamma \vdash \vdash \text { new } \mathrm{C}(\overline{\mathrm{e}}): \mathrm{C}} \quad(\mathrm{~T}-\mathrm{NEW})$	\longmapsto	$\Delta \vdash \mathrm{C}\langle\overline{\mathrm{T}}\rangle^{\gamma} \quad$ fields $\left(\mathrm{C}\langle\overline{\mathrm{T}}\rangle^{\beta}\right)=\overline{\mathrm{V}} \overline{\mathrm{f}}$ $\Delta ;^{\delta} \Gamma \vdash \overline{\mathrm{e}}: \overline{\mathrm{U}} \quad \Delta^{\delta} \vdash \overline{\mathrm{U}}<: \overline{\mathrm{V}}$ $\Delta ;^{\delta} \Gamma \vdash$ new $\mathrm{C}\langle\overline{\mathrm{T}}\rangle{ }^{\beta}{ }^{(\overline{\mathrm{e}}): \mathrm{C}}$ $(\mathrm{GT}-\mathrm{NEW})$

Contributions

- Developed technique for extensible language design - Update syntax, semantics, and proofs
- Add new definitions
- Update existing definitions
- Reuse existing Proofs
- Modules independently mechanically verifiable
- ECOOP paper under construction
- Builds GFJ + Interfaces w/ our techniques

Questions?

Related Work

- R. Stärk, J. Schmid, and E. Börger. Java and the java virtual machine - definition, verification, validation.
- P. D. Mosses. Modular structural operational semantics.
- A. Chlipala.A verified compiler for an impure functional language.

