
A Flexible Formal Verification Framework
for Industrial Scale Validation

Anna Slobodová
July 12, 2011

Centaur Technology, Inc.
anna@centtech.com

Joint work with
Jared Davis, Warren Hunt and Sol Swords

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 1 / 30

Outline

1 About Centaur Technology, Inc.
About the company
VIA Isaiah – X86-64 Microprocessor
Formal Verification of Microprocessor Design

2 FV Framework
ACL2
VL Translator
Transistor Analyzer
GL System

3 Examples of Problems
Verification of Arithmetic Circuits

Verification of Multipliers

RTL-to-RTL Equivalence checker
Late Changes in the Design
Clock Tree Analysis

4 Closing

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 2 / 30

About Centaur Technology, Inc. About the company

About Centaur Technology, Inc.

Based in Austin, TX, USA

Owned by Via Technologies, Inc.

X86 Microprocessor Design
implemented by AMD, Intel and VIA only

About 100 engineers specify, design validate, bring up, test, build
burn-in fixtures – everything but manufacturing

RTL logic team 20
Validation team 20
Transistor-level design team 25
Formal verification team 3

and tens of contractors

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 3 / 30

About Centaur Technology, Inc. VIA Isaiah – X86-64 Microprocessor

VIA Isaiah – X86-64 Microprocessor

X86 designs are complicated

Intel 64-compatible
I am not aware of existence of any formal X86 specification, despite
several attempts to write one

Intel VMX-compatible design

Latest SSEx instructions

Complex micro-architecture for performance

Microcode

Low cost, small size, low power, AND high performance – require
custom design

Targeted at low-power, low-cost products:
netbooks, low-power workstations, and embedded designs.

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 4 / 30

About Centaur Technology, Inc. VIA Isaiah – X86-64 Microprocessor

VIA NanoTM Microprocessor

Contemporary Example

Full X86-64 compatible
two-core design

40nm technology, 97.6
million transistors per
core (195.7)

AES, DES, SHA, and
random-number
generator hardware

Built-in security processor

Runs 40 operating
systems, four VMs

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 5 / 30

About Centaur Technology, Inc. Formal Verification of Microprocessor Design

Status of FV of Microprocessor Design (bird’s eye view)

IBM:

Sixth Sense – very sophisticated equivalence- and model-checking
technology, with a limited use of theorem proving
Protocol verification using Murphi

AMD: ACL2 based verification in a narrow area of FP arithmetics

Intel: Probably the heaviest use of formal methods in industry

Sequential Equivalence-checking deployed everywhere
Model-checking developed by researchers and used by FV experts and
by designers in ASIC teams
Protocol verification using Murphi and TLC
Microcode verification

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 6 / 30

About Centaur Technology, Inc. Formal Verification of Microprocessor Design

Different Business Models of FV

IBM: Mostly their own FV tools developed by big teams
Projects set requirements for passing design through FV

AMD: Small team of highly skilled researchers; use ACL2
Not much deviation from their original focus on arithmetics

Intel: Huge investment into big highly trained teams and growing

Own CAD tool company that provides all FV tools
Research ⇒ Development ⇒ Project CAD teams
Center of FV expertise with cross-project reach
Local FV experts

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 7 / 30

About Centaur Technology, Inc. Formal Verification of Microprocessor Design

Who can afford formal methods?

People with formal verification training are costly

Building own FV tools is expensive and requires years of investment

FV tools from CAD vendors

expensive
limited on-site support
often need tailoring to in-house design methodology
one still needs FV experts to run them

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 8 / 30

About Centaur Technology, Inc. Formal Verification of Microprocessor Design

Who can afford formal methods?

IBM, Intel,...

Centaur Technology...

You can afford it too

It is all about the business model!

Use extensible open source tools

Hire enthusiastic FV experts

Point to the right problems

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 9 / 30

FV Framework

FV Framework

LISP

ACL2

GL

GL
Interp

 VL
Translator

BDD
pkg

SAT res checker PDR res checker

ABC SAT MC
BMC,IMC,PDR

ckt.v

ckt

spec

Transistor
Analyzer

net.v

AIG
pkg

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 10 / 30

FV Framework ACL2

ACL2

LISP

ACL2

GL

GL
Interp

 VL
Translator

BDD
pkg

SAT res checker PDR res checker

ABC SAT MC
BMC,IMC,PDR

ckt.v

ckt

spec

Transistor
Analyzer

net.v

AIG
pkg

Programming language

subset of LISP (CCL)
executability
reflection

1st order logic

Theorem prover support
(Austin)

100 man/year effort

hardened in industrial
environment (AMD,
Rockwell-Collins,
Centaur)

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 11 / 30

FV Framework ACL2

VL tool kit

LISP

ACL2

GL

GL
Interp

 VL
Translator

BDD
pkg

SAT res checker PDR res checker

ABC SAT MC
BMC,IMC,PDR

ckt.v

ckt

spec

Transistor
Analyzer

net.v

AIG
pkg

While not formal, many
theorems about translation

Synthesis like aproach
without optimization

650,000 lines of Verilog
code

Creates an ACL2 constant
with semantics given by E
interpreter

Translation: 13 minutes

Loading: couple of seconds

Linting tool on top of
translator

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 12 / 30

FV Framework VL Translator

Verilog-to-E Translator

Logic

Library Files (.v)

Processor Files (.v)

ROM Images

makeTop
Script

top.v

VL

Loader
reader

preprocessor
lexer

parser
"loader"

ACL2 Program

Parse Tree

Tr
a
n

sf
o
rm

a
ti

o
n

s

Cut Down Modules (Optional)
Make Reasonable
Unparameterize
Fill in Wires
Resolve Argument Lists
Resolve Constant Expressions
Standardize Ranges and Selects
Rewrite Operators
Compute Signs
Self-Determine Sizes
Fix Integer Size to 32 Bits
Context-Determine Sizes
Split Expressions
Replicate Instance Arrays
Truncate Expressions for Lvalues
Optimize
Assignments to Occurrences (Occform)
Eliminate Always Blocks (In progress)

ACL2 Object
(not on disk)

"Conservatively
Approximates"

Parse Tree
ACL2 Object
(not on disk)

Writer

E Modules

Verilog

FV

Q.E.D.
Regressions

DV

Simulation
Centaur's

Regression Suite

"Pass/Fail
Together?"

650,000 lines

1
3

m
in

s

2s

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 13 / 30

FV Framework Transistor Analyzer

Transistor Analyzer

LISP

ACL2

GL

GL
Interp

 VL
Translator

BDD
pkg

SAT res checker PDR res checker

ABC SAT MC
BMC,IMC,PDR

ckt.v

ckt

spec

Transistor
Analyzer

net.v

AIG
pkg

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 14 / 30

FV Framework Transistor Analyzer

Transistor Analyzer

Spice or Verilog
circuit description

Switch-level update
functions

Bryant's algorithm

1-tick update
functions

State detection, delay
insertion, composition

Phase-level update
functions

Oscillation fix,
fixpoint composition

Cycle-level update
functions

Initial states

Reset analysis

Sequential
Equivalence Check

Composition

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 15 / 30

FV Framework GL System

GL System

LISP

ACL2

GL

GL
Interp

 VL
Translator

BDD
pkg

SAT res checker PDR res checker

ABC SAT MC
BMC,IMC,PDR

ckt.v

ckt

spec

Transistor
Analyzer

net.v

AIG
pkg

Symbolic execution
framework for proving
theorems over objects from
a finite domain

Verified clause processor –
creates an ACL2 theorem

Automates discharge of
low-level properties

makes proofs robust to
design changes
requires little
understanding of the
design details
counterexample if fails

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 16 / 30

FV Framework GL System

Example: Counting Bits
S. Anderson: Bit Twiddling Hacks

v = v - ((v >> 1) & 0x55555555);

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

(defun fast-logcount-32 (v)

(let* ((v (- v (logand (ash v -1) #x55555555)))

(v (+ (logand v #x33333333)

(logand (ash v -2) #x33333333))))

(ash (32* (logand (+ v (ash v -4)) #xF0F0F0F)

#x1010101)

-24)))

(defun 32* (x y)

(logand (* x y) (1- (expt 2 32))))

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 17 / 30

FV Framework GL System

Example: continued

(def-gl-thm fast-logcount-32-correct

:hyp (unsigned-byte-p 32 x)

:concl (equal (fast-logcount-32 x)

(logcount x))

:g-bindings ‘((x ,(g-int 0 1 33))))

The proof completes in 0.09 seconds and results in the ACL2 theorem:

(defthm fast-logcount-32-correct

(implies (unsigned-byte-p 32 x)

(equal (fast-logcount-32 x)

(logcount x)))

:hints ((gl-hint ...)))

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 18 / 30

FV Framework GL System

GL System

LISP

ACL2

GL

GL
Interp

 VL
Translator

BDD
pkg

SAT res checker PDR res checker

ABC SAT MC
BMC,IMC,PDR

ckt.v

ckt

spec

Transistor
Analyzer

net.v

AIG
pkg

Returns an ACL theorem or
a counterexample

Various features:
case splitting,
parametrization

Offers a choice between
BDD and SAT solution

verified BDD package
SAT with verified result
SAT without guarantee

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 19 / 30

FV Framework GL System

Binary Decision Diagram and And-Inverter Graph packages

operations proven correct w.r.t. BDD and AIG evaluation

∀x ∈ Bn : (f ⊗ g)(x) = f (x)× g(x)

f and g are BDDs/AIGs;
⊗ is a Boolean operation over BDDs/AIGs;
× the respective Boolean operation.

performance

hash-consing
memoization
lisp garbage collection

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 20 / 30

Examples of Problems

Examples of Problems

Verification of Arithmetic Circuits

RTL-to-RTL Equivalence Checker

Late Changes in the Design

Clock Tree Analysis

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 21 / 30

Examples of Problems Verification of Arithmetic Circuits

Verification of Arithmetic Circuits

All proofs use strength of ACL2 with design with GL System - either
BDD or SAT, used to discharge “low”-level properties

Complexity of the design

High-level algorithm structure often lost in low-level optimizations
Brute-force extraction of equations does not work
Design is not stable - changing while proofs are developed

Clarifying specification - X86 instructions are not the same as
micro-operations

Most of arithmetic, logic and misc micro-operations verified

FADD/FSUB verification
Verification of Integer and Floating-Point Multipliers
Verification of MMX and IU

Proofs run at least once a week

Proofs highly portable to future generation designs

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 22 / 30

Examples of Problems Verification of Arithmetic Circuits

Verification of High-Performance Multipliers
Complexity - inherent in function and in design

B−vector

Product−vector

A−vector

Calculation

Exponent

Booth

Encoding

Booth

Encoding

32 x 32

 CSA

 Tree

32 x 32

 CSA

Tree

Add / Round / Normalize

Prepare, Special Cases, Multiple Rounds

Combine, Calculate Flags, Special Cases

Multiplication function is
beyond the capacity of
BDDs and SAT-solver

Requires decomposition

Boundaries not clear,
sometimes spread over time

No automatic way of
finding properties on the
decomposition boundary

Requires the proof of the
multiplication algorithm

Pipelined design might
cause a reconfiguration of
the multiplier every cycle

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 23 / 30

Examples of Problems Verification of Arithmetic Circuits

Verification of Multipliers (continued)

Several Multipliers, many multiplier configurations for variety of pipelined
operations

signed and unsigned integer multiply: up to 64x64

packed-integer multiply

packed-integer multiply-and-add

floating-point: X87 and SSEx flavors with single, double, and
extended precisions

All verified using GL-System with BDDs

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 24 / 30

Examples of Problems RTL-to-RTL Equivalence checker

RTL-to-RTL Equivalence checker

Motivation:

Changes in RTL design reflect our everyday reality – fixing functional
bugs, fixing timing, aid to equivalence-checker
Often within latch boundaries
Riskier in later stages of the design

Solution: RTL-designer-friendly Combinational Equivalence Checker

First version was put together within couple of days
Then tuned for easy use - no FV knowledge required
Counterexamples feed Verilog simulator to ease debugging

Extensible to sequential equivalence checker

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 25 / 30

Examples of Problems Late Changes in the Design

Late Changes in the Design

Problem: Bug escapes always happen. The later the more costly!

Bug fixes

In microcode
Changing transistors – changing design masks VERY COSTLY!
Spare transistors/gates in the design to be used for late changes.

Can we help with the last solution? Automate the slow tedious
process done by senior designers.

Given: an RTL, gate-network implementation and changes in the RTL
Goal: find equations consisting of the network gates that implement
the RTL change

Solution: using our equivalence-checking capabilities, we find
mappings from RTL signals to network gates, or an equation
containing the gates
Typically runs in minutes.

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 26 / 30

Examples of Problems Clock Tree Analysis

Clock Tree Analysis

en1

en2

en3

en4

en5

en6

en7

en8

en9

clk

clka

clkb

clkc

clkd

clkaa

clkab

clkba

clkca

clkda

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 27 / 30

Closing

Summary

ACL2 based FV framework used at Centaur

Flexibility to implement different tools and prove their correctness
VL-Translator builds a formal model of the RTL design
Transistor Analyzer builds a formal model from the transisto-level
design
GL-system equipped with BDD pkg and SAT solver
Correctness of arithmetic circuits
Various problem-driven tools have been developed
External tools are used were we need more capabilities

Future – driven by company’s needs

Extend proofs to other areas
Make our tools more robust and user friendly
Gain more influence on design methodology

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 28 / 30

Closing

Conclusion

FV can be done in a small/medium size company

Choice of framework/tools/language is crucial

Extensibility – most important

Recognition that FV cannot solve all problems (yet). Choose those
with high return first.

Re-use, strengthen, extend, automate

Keep pushing the boundary

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 29 / 30

Closing

Acknowledgement

We wish to acknowledge:
Bob Boyer, Gary Byers, Niklas Een, Matt Kaufmann, Alan Mishchenko

Anna Slobodová (Centaur Technology) A Flexible Formal Verification Framework for Industrial Scale ValidationJuly 12, 2011 MEMOCODE 30 / 30

	About Centaur Technology, Inc.
	About the company
	VIA Isaiah – X86-64 Microprocessor
	Formal Verification of Microprocessor Design

	FV Framework
	ACL2
	VL Translator
	Transistor Analyzer
	GL System

	Examples of Problems
	Verification of Arithmetic Circuits
	RTL-to-RTL Equivalence checker
	Late Changes in the Design
	Clock Tree Analysis

	Closing

