State-of-the-art SAT Solving

Marijn J. H. Heule
University of Texas

April 16, 2012 @ ACL2

The Satisfiability（SAT）problem

```
(x5\vee 和\vee 列})\wedge(\mp@subsup{x}{2}{}\vee\mp@subsup{\overline{x}}{1}{}\vee\mp@subsup{\overline{x}}{3}{})\wedge(\mp@subsup{\overline{x}}{8}{}\vee\mp@subsup{\overline{x}}{3}{}\vee\mp@subsup{\overline{x}}{7}{})\wedge(\mp@subsup{\overline{x}}{5}{}\vee\mp@subsup{x}{3}{}\vee\mp@subsup{x}{8}{})
(\mp@subsup{\overline{x}}{6}{}\vee\mp@subsup{\overline{x}}{1}{}\vee\mp@subsup{\overline{x}}{5}{})\wedge(\mp@subsup{x}{8}{}\vee\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{x}{2}{}\vee\mp@subsup{x}{1}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{\overline{x}}{1}{}\vee\mp@subsup{x}{8}{}\vee\mp@subsup{x}{4}{})\wedge
(\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{\overline{x}}{6}{}\vee\mp@subsup{x}{8}{})\wedge(\mp@subsup{x}{8}{}\vee\mp@subsup{x}{3}{}\vee\mp@subsup{\overline{x}}{9}{})\wedge(\mp@subsup{x}{9}{}\vee\mp@subsup{\overline{x}}{3}{}\vee\mp@subsup{x}{8}{})\wedge(\mp@subsup{x}{6}{}\vee\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{x}{5}{})\wedge
(x2\vee \mp@subsup{x}{3}{}\vee\mp@subsup{\overline{x}}{8}{})\wedge(\mp@subsup{x}{8}{}\vee\mp@subsup{\overline{x}}{6}{}\vee\mp@subsup{\overline{x}}{3}{})\wedge(\mp@subsup{x}{8}{}\vee\mp@subsup{\overline{x}}{3}{}\vee\mp@subsup{\overline{x}}{1}{})\wedge(\mp@subsup{\overline{x}}{8}{}\vee\mp@subsup{x}{6}{}\vee\mp@subsup{\overline{x}}{2}{})\wedge
(x7\vee \vee x9 \vee 列 ) ^( }\mp@subsup{x}{8}{}\vee\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{x}{2}{})\wedge(\mp@subsup{\overline{x}}{1}{}\vee\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{x}{4}{})\wedge(\mp@subsup{x}{8}{}\vee\mp@subsup{x}{1}{}\vee\mp@subsup{\overline{x}}{2}{})
(x3\vee \mp@subsup{\overline{x}}{4}{}\vee\mp@subsup{\overline{x}}{6}{})\wedge(\mp@subsup{\overline{x}}{1}{}\vee\mp@subsup{\overline{x}}{7}{}\vee\mp@subsup{x}{5}{})\wedge(\mp@subsup{\overline{x}}{7}{}\vee\mp@subsup{x}{1}{}\vee\mp@subsup{x}{6}{})\wedge(\mp@subsup{\overline{x}}{5}{}\vee\mp@subsup{x}{4}{}\vee\mp@subsup{\overline{x}}{6}{})\wedge
(\mp@subsup{\overline{x}}{4}{}\vee\mp@subsup{x}{9}{}\vee\mp@subsup{\overline{x}}{8}{})\wedge(\mp@subsup{x}{2}{}\vee\mp@subsup{x}{9}{}\vee\mp@subsup{x}{1}{})\wedge(\mp@subsup{x}{5}{}\vee\mp@subsup{\overline{x}}{7}{}\vee\mp@subsup{x}{1}{})\wedge(\mp@subsup{\overline{x}}{7}{}\vee\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{\overline{x}}{6}{})\wedge
```



```
(x2\vee \mp@subsup{x}{8}{}\vee\mp@subsup{x}{1}{})\wedge(\mp@subsup{\overline{x}}{7}{}\vee\mp@subsup{x}{1}{}\vee\mp@subsup{x}{5}{})\wedge(\mp@subsup{x}{1}{}\vee\mp@subsup{x}{4}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{x}{1}{}\vee\mp@subsup{\overline{x}}{9}{}\vee\mp@subsup{\overline{x}}{4}{})\wedge
(x (x \vee x 
```



```
(x6}\vee\mp@subsup{x}{7}{}\vee\mp@subsup{\overline{x}}{3}{})\wedge(\mp@subsup{\overline{x}}{8}{}\vee\mp@subsup{\overline{x}}{6}{}\vee\mp@subsup{\overline{x}}{7}{})\wedge(\mp@subsup{x}{6}{}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{\overline{x}}{8}{}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{5}{}
```

Does there exist an assignment satisfying all clauses？

Search for a satisfying assignment (or proof none exists)

$$
\begin{aligned}
& \left(x_{5} \vee x_{8} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{3} \vee \bar{x}_{7}\right) \wedge\left(\bar{x}_{5} \vee x_{3} \vee x_{8}\right) \wedge \\
& \left(\bar{x}_{6} \vee \bar{x}_{1} \vee \bar{x}_{5}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{8} \vee x_{4}\right) \wedge \\
& \left(\bar{x}_{9} \vee \bar{x}_{6} \vee x_{8}\right) \wedge\left(x_{8} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(x_{9} \vee \bar{x}_{3} \vee x_{8}\right) \wedge\left(x_{6} \vee \bar{x}_{9} \vee x_{5}\right) \wedge \\
& \left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{8}\right) \wedge\left(x_{8} \vee \bar{x}_{6} \vee \bar{x}_{3}\right) \wedge\left(x_{8} \vee \bar{x}_{3} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{8} \vee x_{6} \vee \bar{x}_{2}\right) \wedge \\
& \left(x_{7} \vee x_{9} \vee \bar{x}_{2}\right) \wedge\left(x_{8} \vee \bar{x}_{9} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{9} \vee x_{4}\right) \wedge\left(x_{8} \vee x_{1} \vee \bar{x}_{2}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{6}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{7} \vee x_{5}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{6}\right) \wedge\left(\bar{x}_{5} \vee x_{4} \vee \bar{x}_{6}\right) \wedge \\
& \left(\bar{x}_{4} \vee x_{9} \vee \bar{x}_{8}\right) \wedge\left(x_{2} \vee x_{9} \vee x_{1}\right) \wedge\left(x_{5} \vee \bar{x}_{7} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee \bar{x}_{9} \vee \bar{x}_{6}\right) \wedge \\
& \left(x_{2} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{8} \vee \bar{x}_{4} \vee x_{5}\right) \wedge\left(x_{5} \vee x_{9} \vee x_{3}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{7} \vee x_{9}\right) \wedge \\
& \left(x_{2} \vee \bar{x}_{8} \vee x_{1}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{9} \vee \bar{x}_{4}\right) \wedge \\
& \left(x_{3} \vee x_{5} \vee x_{6}\right) \wedge\left(\bar{x}_{6} \vee x_{3} \vee \bar{x}_{9}\right) \wedge\left(\bar{x}_{7} \vee x_{5} \vee x_{9}\right) \wedge\left(x_{7} \vee \bar{x}_{5} \vee \bar{x}_{2}\right) \wedge \\
& \left(x_{4} \vee x_{7} \vee x_{3}\right) \wedge\left(x_{4} \vee \bar{x}_{9} \vee \bar{x}_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{7}\right) \wedge \\
& \left(x_{6} \vee x_{7} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{6} \vee \bar{x}_{7}\right) \wedge\left(x_{6} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{8} \vee x_{2} \vee x_{5}\right)
\end{aligned}
$$

Play the SAT game: http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php

Motivation

From 100 variables, 200 constraints (early 90s) to $1,000,000$ vars. and $20,000,000 \mathrm{cls}$. in 20 years.

Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design, Routing, Combinatorial problems, Equivalence Checking, etc.

SAT used to solve many other problems!

Motivation

From 100 variables, 200 constraints (early 90s) to $1,000,000$ vars. and $20,000,000 \mathrm{cls}$. in 20 years.

Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design, Routing, Combinatorial problems, Equivalence Checking, etc.

SAT used to solve many other problems!

Motivation

From 100 variables, 200 constraints (early 90s) to $1,000,000$ vars. and $20,000,000 \mathrm{cls}$. in 20 years.

Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design, Routing, Combinatorial problems, Equivalence Checking, etc.

SAT used to solve many other problems!

Overview

Search for Lemmas
Depth-first search

- Learning Lemmas
- Data-structures
- Heuristics

Search for Simplification

- Variable elimination
- Blocked clause elimination
- Unhiding redundancy

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\begin{aligned}
& \left(x_{1} \vee x_{4}\right) \wedge \\
& \left(x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{3} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \wedge \\
& \mathcal{F}_{\text {extra }}
\end{aligned}
$$

Conflict-driven SAT solvers: Search and Analysis

$$
\left(\bar{x}_{2} \vee \bar{x}_{4} \vee \bar{x}_{5}\right)
$$

Conflict-driven SAT solvers: Pseudo-code

1: while TRUE do
2: $\quad I_{\text {decision }}:=$ GETDECISIONLITERAL()
3:
4: $\quad \mathcal{F}:=\operatorname{Simplify}\left(\mathcal{F}\left(I_{\text {decision }} \leftarrow 1\right)\right)$
5: \quad while \mathcal{F} contains $C_{\text {falsified }}$ do
6 :
7:
8:
9: $C_{\text {conflict }}:=$ AnalyzeConflict($C_{\text {falsified }}$) If $C_{\text {conflict }}=\emptyset$ then return unsatisfiable BackTrack $\left(C_{\text {conflict }}\right)$ $\mathcal{F}:=\operatorname{Simplify}\left(\mathcal{F} \cup\left\{C_{\text {conflict }}\right\}\right)$
10: end while
11: end while

Learning conflict clauses (lemma's)

Learning conflict clauses (lemma's)

Learning conflict clauses (lemma's)

first unique implication point

Learning conflict clauses (lemma's)

Average Learned Clause Length

Data-structures

Watch pointers

Simple data structure for unit propagation

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=*, x_{2}=*, x_{3}=*, x_{4}=*, x_{5}=*, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=*, x_{2}=*, x_{3}=*, x_{4}=*, x_{5}=\mathbf{1}, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=*, x_{2}=*, x_{3}=\mathbf{1}, x_{4}=*, x_{5}=1, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=*, x_{2}=*, x_{3}=1, x_{4}=*, x_{5}=1, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=1, x_{2}=*, x_{3}=1, x_{4}=*, x_{5}=1, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$\varphi=\left\{x_{1}=1, x_{2}=*, x_{3}=1, x_{4}=*, x_{5}=1, x_{6}=*\right\}$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=1, x_{2}=*, x_{3}=1, x_{4}=\mathbf{0}, x_{5}=1, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=1, x_{2}=\mathbf{0}, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=*\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=\mathbf{1}\right\}
$$

Conflict-driven: Watch pointers (1)

$$
\varphi=\left\{x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=1\right\}
$$

Conflict-driven: Watch pointers (2)

Only examine (get in the cache) a clause when both

- a watch pointer gets falsified
- the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses \rightarrow watch pointers
No detailed information available
Not used for binary clauses

Average Number Clauses Visited Per Propagation

Percentage visited clauses with other watched literal true

Heuristics

Most important CDCL heuristics

Variable selection heuristics

- aim: minimize the search space
- plus: could compensate a bad value selection

Value selection heuristics

- aim: guide search towards a solution (or conflict)
- plus: could compensate a bad variable selection. cache solutions of subproblems [PipatsrisawatDarwiche'07]

Most important CDCL heuristics

Variable selection heuristics

- aim: minimize the search space
- plus: could compensate a bad value selection

Value selection heuristics

- aim: guide search towards a solution (or conflict)
- plus: could compensate a bad variable selection, cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies

- aim: avoid heavy-tail behavior
- plus: focus search on recent conflicts when combined with dynamic heuristics

Most important CDCL heuristics

Variable selection heuristics

- aim: minimize the search space
- plus: could compensate a bad value selection

Value selection heuristics

- aim: guide search towards a solution (or conflict)
- plus: could compensate a bad variable selection, cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies

- aim: avoid heavy-tail behavior [GomesSelmanCrato'97]
- plus: focus search on recent conflicts when combined with dynamic heuristics

Variable selection heuristics

Based on the occurrences in the (reduced) formula

- examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads
- not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

- original idea (zChaff): for each conflict, increase the score of involved variables by 1 , half all scores each 256 conflicts
- improvement (MiniSAT): for each conflict, increase the score of involved variables by δ and increase $\delta:=1.05 \delta$

Variable selection heuristics

Based on the occurrences in the (reduced) formula

- examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads
- not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

- original idea (zChaff): for each conflict, increase the score of involved variables by 1 , half all scores each 256 conflicts [MoskewiczMZZM2001]
- improvement (MiniSAT): for each conflict, increase the score of involved variables by δ and increase $\delta:=1.05 \delta$
[EenSörensson2003]

Visualization of VSIDS in PicoSAT

http://www. youtube.com/watch?v=MOjhFywLre8

Value selection heuristics

Based on the occurrences in the (reduced) formula

- examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads
- not practical for CDCL solver due to watch pointers

Based on the encoding / consequently

- negative branching (early MiniSAT)

Based on the last implied value (phase-saving)

- introduced to CDCL
- already used in local search

Value selection heuristics

Based on the occurrences in the (reduced) formula

- examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads
- not practical for CDCL solver due to watch pointers

Based on the encoding / consequently

- negative branching (early MiniSAT) [EenSörensson2003]

Based on the last implied value (phase-saving)

- already used in local search

Value selection heuristics

Based on the occurrences in the (reduced) formula

- examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads
- not practical for CDCL solver due to watch pointers

Based on the encoding / consequently

- negative branching (early MiniSAT) [EenSörensson2003]

Based on the last implied value (phase-saving)

- introduced to CDCL
- already used in local search
[PipatsrisawatDarwiche2007]
[HirschKojevnikov2001]

Heuristics: Phase-saving

Selecting the last implied value remembers solved components

Restarts

Restarts in CDCL solvers:

- Counter heavy-tail behavior [GomesSelmanCrato'97]
- Unassign all variables but keep the (dynamic) heuristics

Restart strategies:

- Geometrical restart e.g. 100, 150, 225,333, 500, 750
- Luby sequence: e.g. $100,100,200,100,100,200,400$

Rapid restarts by reusing trail:

- Partial restart same effect as full restart
- Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4,

Restarts

Restarts in CDCL solvers:

- Counter heavy-tail behavior

[GomesSelmanCrato'97]

- Unassign all variables but keep the (dynamic) heuristics

Restart strategies:
[Walsh'99, LubySinclairZuckerman'93]

- Geometrical restart: e.g. $100,150,225,333,500,750, \ldots$
- Luby sequence: e.g. $100,100,200,100,100,200,400, \ldots$

Rapid restarts by reusing trail:

- Partial restart same effect as full restart
- Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4,

Restarts

Restarts in CDCL solvers:

- Counter heavy-tail behavior

[GomesSelmanCrato'97]

- Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]

- Geometrical restart: e.g. $100,150,225,333,500,750, \ldots$
- Luby sequence: e.g. $100,100,200,100,100,200,400, \ldots$

Rapid restarts by reusing trail: [vanderTakHeuleRamos'11]

- Partial restart same effect as full restart
- Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4, ...

Preliminary CDCL solver in ACL2

"Don't be smart"

Removal of false literals in ACL2

(defun neg (literal) (*-1 literal))
(defun false-literal (assignment literal)
(member (neg literal) assignment))
(defun one-not-false-literal (assignment clause)
(cond ((atom clause) nil)
((false-literal assignment (car clause))
(one-not-false-literal assignment (cdr clause)))
(t clause)))
(defun two-not-false-literals (assignment clause)
(cond ((atom clause) nil)
((false-literal assignment (car clause))
(two-not-false-literals assignment (cdr clause)))
(t (cons (car clause)
(one-not-false-literal assignment (cdr clause))))))

Unit clause is member of all-lits in ACL2

(defun all-lits (formula)
(if (atom formula)
nil
(append (car formula) (all-lits (cdr formula)))))
(defthm reduced-clause-implies-member-car-reduced-clause
(implies (two-not-false-literals assignment clause)
(member (car (two-not-false-literals assignment clause)) clause)))
(defthm member-append-member-or
(iff (member x (append y z)) (or (member $\times \mathrm{y}$) (member $\times \mathrm{z})$)))
(defthm reduced-clause-implies-member-car-all-lits
(implies (and (two-not-false-literals assignment clause)
(member clause formula))
(member (car (two-not-false-literals assignment clause))
(all-lits formula))))

The new get-unit procedure in ACL2

(defun get-unit (formula assignment)
(if (atom formula)
(mv nil nil)
(let ((reduced-clause (two-not-false-literals assignment
(car formula))))
(cond ((not reduced-clause) (mv (car formula) nil)) ((and (car reduced-clause)
(not (cdr reduced-clause))
(not (member (car reduced-clause) assignment)))
(mv (car formula) (car reduced-clause)))
$(\mathrm{t}($ get-unit $($ cdr formula) assignment) $)))))$
(defthm get-unit-returns-member-of-all-lits
(implies (cadr (get-unit formula assignment))
(member (cadr (get-unit formula assignment))
(all-lits formula))))

Old unit propagation code in ACL2

(defun neg (literal) (*-1 literal))
(defun reduce-clause (assignment clause unassigned)
(cond ((atom clause) unassigned)
((member (neg (car clause)) assignment)
(reduce-clause assignment (cdr clause) unassigned))
(unassigned (append unassigned clause))
(t (reduce-clause assignment (cdr clause) (list (car clause))))))
(defun get-unit (formula assignment)
(if (atom formula)
(mv nil nil)
(let ((reduced-clause (reduce-clause assignment (car formula) nil)))
(if (and (not (cdr reduced-clause)) ; if unit and not satisfied
(not (member (car reduced-clause) assignment)))
(mv (car formula) (car reduced-clause))
(get-unit (cdr formula) assignment)))))

Reduction theorem and some defuns in ACL2

(defthm new-element-reduces-difference (implies (and (member e y)
(not (member ex)))
$(<($ len (set-difference-equal y (cons ex)))
(len (set-difference-equal $\mathrm{y} \times$)))))
(defun remove-literal (clause literal)
(cond ((atom clause) clause)
((eql (car clause) literal) (cdr clause))
(t (cons (car clause) (remove-literal (cdr clause) literal)))))
(defun resolve (clause resolvent literal)
(union-equal (remove-literal clause literal) (remove-literal resolvent (neg literal))))
(defun unit-under-assignment (assignment clause)
(and (car (two-not-false-literals assignment clause))
(not (cdr (two-not-false-literals assignment clause)))))

First unique implication point in ACL2

(defun implications-or-resolvent (formula assignment implications)
(declare (xargs :measure (nfix (len
(set-difference-equal (all-lits formula) implications)))))
(mv-let (clause literal)
(get-unit formula (append assignment implications))
(if (not literal) ; end recursion
(if clause (mv nil clause) (mv implications nil))
(mv-let (more-implications resolvent)
(implications-or-resolvent formula assignment
(cons literal implications))
(if more-implications
(mv more-implications nil)
(if (or (unit-under-assignment assignment resolvent)
(not (member (neg literal) resolvent)))
(mv nil resolvent)
$(m v$ nil $($ resolve clause resolvent literal $)))))))$)

Old code of first unique implication point in ACL2

(defun implications-or-resolvent (formula assignment implications)
(mv-let (clause literal)
(get-unit formula (append assignment implications))
(if (not literal) ; no unit means either conflict or done (mv implications clause) (mv-let (more-implications resolvent)
(implications-or-resolvent formula assignment
(cons literal implications))
(if (and (member (neg literal) resolvent) (cadr (two-not-false-literals assignment resolvent)))
(mv nil (resolve clause resolvent literal)) (mv more-implications resolvent))))))

get-decision in ACL2

(defun get-decision (heuristics assignment)
(if (atom heuristics)
nil
(if (or (member (car heuristics) assignment)
(member (neg (car heuristics)) assignment))
(get-decision (cdr heuristics) assignment)
(list (car heuristics)))))
(defthm get-decision-returns-not-member-assignment (implies (get-decision heuristics assignment) (not (member (car (get-decision heuristics assignment)) assignment))))

car get-decision member of implications in ACL2

(defthm cons-subsetp-lemma
(implies (subsetp \times Ist) (subsetp $\times($ cons $y \operatorname{lst})))$)
(defthm decision-subsetp-of-implications
(implies (car (implications-or-resolvent fad))
(subsetp d (car (implications-or-resolvent fad)))))
(defthm subsetp-car-member
(implies (and (consp \times)
(subsetp $\times \mathrm{y}$))
(member (car x) y)))
(defthm car-get-decision-member-car-implications
(implies (and (consp d)
(car (implications-or-resolvent fad)))
(member (car d) (car (implications-or-resolvent fad)))))

get-decision-and-implication-reduce-set-difference in ACL2

(defthm member-not-member-reduce-set-difference
(implies (and (member (car get-d) h)
(member (car get-d) i)
(not (member (car get-d) a)))
(< (len (set-difference-equal h (append a i))) (len (set-difference-equal h a)))))
(defthm get-decision-and-implication-reduce-set-difference (implies (and (get-decision ha)
(car (implications-or-resolvent fa (get-decision h a))))
(and (member (car (get-decision ha)) h)
(member (car (get-decision ha))
(car (implications-or-resolvent fa (get-decision ha))))
(not (member (car (get-decision ha)) a))
(< (len (set-difference-equal h (append a
(car (implications-or-resolvent fa (get-decision ha)))))) (len (set-difference-equal $\mathrm{h} a))$))))

Solution or conflict clause in ACL2

(defun assign-rec (f h a)
(declare (xargs :measure (nfix (len (set-difference-equal h a)))))
(let ((decision (get-decision ha)))
(if (not decision)
(mv assignment nil) ; found a solution $->$ satisfiable
(mv-let (implications resolvent)
(implications-or-resolvent fa decision)
(if implications
(assign-rec f h (append a implications)) (mv nil resolvent))))))
(defun solution-or-resolvent (formula heuristics)
(mv-let (assignment resolvent)
(implications-or-resolvent formula nil nil)
(if resolvent
(mv nil nil) ; found refutation $->$ unsatisfiable (assign-rec formula heuristics assignment))))

Top level structure CDCL in ACL2

(defun heuristics-init (formula)
(all-lits formula))
(skip-proofs
(defun cdcl-rec (formula heuristics) ; returns solution or unsatisfiable (mv-let (solution resolvent)
(solution-or-resolvent formula heuristics)
(cond (resolvent (cdcl-rec (cons resolvent formula) heuristics)) (solution solution) ; found solution
(t 'unsatisfiable)))) ; found refutation
)
(defun cdcl (formula)
(cdcl-rec formula (heuristics-init formula)))

Search for Simplification

Variable Elimination

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C=\left(x \vee a_{1} \vee \cdots \vee a_{i}\right)$ and $D=\left(\bar{x} \vee b_{1} \vee \cdots \vee b_{j}\right)$, the resolvent of C and D on variable x (denoted by $C \otimes_{x} D$) is $\left(a_{1} \vee \cdots \vee a_{i} \vee b_{1} \vee \cdots \vee b_{j}\right)$
Resolution on sets of clauses F_{x} and $F_{\bar{x}}$ (denoted by $F_{x} \otimes_{x} F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_{x}$ and $D \in F_{\bar{x}}$.

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C=\left(x \vee a_{1} \vee \cdots \vee a_{i}\right)$ and $D=\left(\bar{x} \vee b_{1} \vee \cdots \vee b_{j}\right)$, the resolvent of C and D on variable x (denoted by $C \otimes_{x} D$) is $\left(a_{1} \vee \cdots \vee a_{i} \vee b_{1} \vee \cdots \vee b_{j}\right)$
Resolution on sets of clauses F_{x} and $F_{\bar{x}}$ (denoted by $F_{x} \otimes_{x} F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_{x}$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C=\left(x \vee a_{1} \vee \cdots \vee a_{i}\right)$ and $D=\left(\bar{x} \vee b_{1} \vee \cdots \vee b_{j}\right)$, the resolvent of C and D on variable x (denoted by $C \otimes_{x} D$) is $\left(a_{1} \vee \cdots \vee a_{i} \vee b_{1} \vee \cdots \vee b_{j}\right)$
Resolution on sets of clauses F_{x} and $F_{\bar{x}}$ (denoted by $F_{x} \otimes_{x} F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_{x}$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of clause distribution

$\overbrace{\bar{x}}\left\{\begin{array}{ccc}(x \vee c) & (x \vee \bar{d}) & (x \vee \bar{a} \vee \bar{b}) \\ (\bar{x} \vee b) & (a \vee c) & (a \vee d) \\ (\bar{x} \vee \bar{e} \vee f) & (a \vee \bar{a} \vee \bar{b}) \\ (c \vee \bar{e} \vee f) & (b \vee d) & (b \vee \bar{a} \vee \bar{b}) \\ (c \vee \bar{e} \vee f) & (\bar{a} \vee \bar{b} \vee \bar{e} \vee f)\end{array}\right.$			

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of clause distribution

	F_{x}		
	$(x \vee c)$	$(x \vee \bar{d})$	$(x \vee \bar{a} \vee \bar{b})$
$\int(\bar{x} \vee a)$	$(a \vee c)$	$(a \vee d)$	$(\mathrm{a} \vee \overline{\mathrm{a}} \vee \overline{\mathrm{b}})$
$F_{\bar{x}}\left\{\begin{array}{c}(\bar{x} \vee b) \\ (\bar{x} \vee b) \\ (\bar{x} \vee \bar{e} \vee f)\end{array}\right.$	$(b \vee c)$	$(b \vee d)$	$(b \vee \bar{a} \vee \bar{b})$
$\left(\begin{array}{l}\text { (} \\ \vee \\ \bar{e} \vee f)\end{array}\right.$	$(c \vee \bar{e} \vee f)$	$(d \vee \bar{e} \vee f)$	$(\bar{a} \vee \bar{b} \vee \bar{e} \vee f)$

Example VE by clause distribution [DavisPutnam'60]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of clause distribution

example: $\left|F_{x} \otimes F_{\bar{x}}\right|>\left|F_{\chi}\right|+\left|F_{\bar{x}}\right|$; in general: exponential growth of clauses

VE by substitution [EenBiere07]

General idea

Detect gates (or definitions) $x=\operatorname{GATE}\left(a_{1}, \ldots, a_{n}\right)$ in the formula and use them to reduce the number of added clauses

VE by substitution [EenBiere07]

General idea

Detect gates (or definitions) $x=\operatorname{GATE}\left(a_{1}, \ldots, a_{n}\right)$ in the formula and use them to reduce the number of added clauses

Possible gates

gate	G_{x}	$G_{\bar{x}}$
$\operatorname{AND}\left(a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1} \vee \cdots \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1}\right), \ldots,\left(\bar{x} \vee a_{n}\right)$
$\operatorname{OR}\left(a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1}\right), \ldots,\left(x \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1} \vee \cdots \vee a_{n}\right)$
$\operatorname{ITE}(c, t, f)$	$(x \vee \bar{c} \vee \bar{t}),(x \vee c \vee \bar{f})$	$(\bar{x} \vee \bar{c} \vee t),(\bar{x} \vee c \vee f)$

VE by substitution [EenBiere07]

General idea

Detect gates (or definitions) $x=\operatorname{GATE}\left(a_{1}, \ldots, a_{n}\right)$ in the formula and use them to reduce the number of added clauses

Possible gates

gate	G_{x}	$G_{\bar{x}}$
$\operatorname{AND}\left(a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1} \vee \cdots \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1}\right), \ldots,\left(\bar{x} \vee a_{n}\right)$
$\operatorname{OR}\left(a_{1}, \ldots, a_{n}\right)$	$\left(x \vee \bar{a}_{1}\right), \ldots,\left(x \vee \bar{a}_{n}\right)$	$\left(\bar{x} \vee a_{1} \vee \cdots \vee a_{n}\right)$
$\operatorname{ITE}(c, t, f)$	$(x \vee \bar{c} \vee \bar{t}),(x \vee c \vee \bar{f})$	$(\bar{x} \vee \bar{c} \vee t),(\bar{x} \vee c \vee f)$

Variable elimination by substitution [EenBiere07]
Let $R_{x}=F_{x} \backslash G_{x} ; R_{\bar{x}}=F_{\bar{x}} \backslash G_{\bar{x}}$.
Replace $F_{x} \wedge F_{\bar{x}}$ by $G_{x} \otimes_{x} R_{\bar{x}} \wedge G_{\bar{x}} \otimes_{x} R_{x}$.

VE by substitution [EenBiere'07]

Example of gate extraction: $x=\operatorname{AND}(a, b)$

$$
\begin{aligned}
& F_{x}=(x \vee c) \wedge(x \vee \bar{d}) \wedge(x \vee \bar{a} \vee \bar{b}) \\
& F_{\bar{x}}=(\bar{x} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{x} \vee \bar{e} \vee f)
\end{aligned}
$$

Example of substitution

> using substitution:

VE by substitution [EenBiere'07]

Example of gate extraction: $x=\operatorname{AND}(a, b)$

$$
\begin{aligned}
& F_{x}=(x \vee c) \wedge(x \vee \bar{d}) \wedge(x \vee \bar{a} \vee \bar{b}) \\
& F_{\bar{x}}=(\bar{x} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{x} \vee \bar{e} \vee f)
\end{aligned}
$$

Example of substitution

	$\overbrace{(x \vee c)}^{R_{x}}$	$\overbrace{(x \vee \bar{d})}$	$\overbrace{(x \vee \bar{a} \vee \bar{b})}^{G_{x}}$
$G_{\bar{x}}\left\{\begin{array}{ccc}(\bar{x} \vee a) \\ (\bar{x} \vee b) & (a \vee c) & (a \vee d) \\ R_{\bar{x}}\{(b \vee c) & (b \vee d) \\ (\bar{x} \vee \bar{e} \vee f) & & \end{array}\right.$	$(\bar{a} \vee \bar{b} \vee \bar{e} \vee f)$		

VE by substitution [EenBiere'07]

Example of gate extraction: $x=\operatorname{AND}(a, b)$

$$
\begin{aligned}
& F_{x}=(x \vee c) \wedge(x \vee \bar{d}) \wedge(x \vee \bar{a} \vee \bar{b}) \\
& F_{\bar{x}}=(\bar{x} \vee a) \wedge(\bar{x} \vee b) \wedge(\bar{x} \vee \bar{e} \vee f)
\end{aligned}
$$

Example of substitution

	$\overbrace{(x \vee c)}^{R_{x}}$	$\overbrace{(x \vee \bar{d})}$	$\overbrace{(x \vee \bar{a} \vee \bar{b})}^{G_{x}}$
$G_{\bar{x}}\left\{\begin{array}{ccc}(\bar{x} \vee a) \\ (\bar{x} \vee b) & (a \vee c) & (a \vee d) \\ R_{\bar{x}}\{(\bar{x} \vee \bar{e} \vee f) & (b \vee c) & (b \vee d)\end{array}\right.$	$(\bar{a} \vee \bar{b} \vee \bar{e} \vee f)$		

using substitution: $\left|F_{x} \otimes F_{\bar{x}}\right|<\left|F_{x}\right|+\left|F_{\bar{x}}\right|$

Blocked Clause Elimination

Blocked Clauses [Kullmann'99]

Definition (Blocking literal)

A literal / in a clause C of a CNF F blocks C w.r.t. F if for every clause $C^{\prime} \in F$ with $\bar{l} \in C^{\prime}$, the resolvent $(C \backslash\{I\}) \cup\left(C^{\prime} \backslash\{\bar{l}\}\right)$ obtained from resolving C and C^{\prime} on I is a tautology.

With respect to a fixed CNF and its clauses we have:
Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.
\square

Removal of an arbitrary blocked clause preserves satisfiability.

Blocked Clauses [Kullmann'99]

Definition (Blocking literal)

A literal / in a clause C of a CNF F blocks C w.r.t. F if for every clause $C^{\prime} \in F$ with $\bar{I} \in C^{\prime}$, the resolvent $(C \backslash\{I\}) \cup\left(C^{\prime} \backslash\{\bar{l}\}\right)$ obtained from resolving C and C^{\prime} on I is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition (Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Example

Consider the formula $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$.
First clause is not blocked.
Second clause is blocked by both a and \bar{c}. Third clause is blocked by c

Removal of an arbitrary blocked clause preserves satisfiability.

Blocked Clauses [Kullmann'99]

Definition (Blocking literal)

A literal / in a clause C of a CNF F blocks C w.r.t. F if for every clause $C^{\prime} \in F$ with $\bar{I} \in C^{\prime}$, the resolvent $(C \backslash\{I\}) \cup\left(C^{\prime} \backslash\{\bar{l}\}\right)$ obtained from resolving C and C^{\prime} on I is a tautology.

With respect to a fixed CNF and its clauses we have:
Definition (Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Example

Consider the formula $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$.
First clause is not blocked.
Second clause is blocked by both a and \bar{c}. Third clause is blocked by c

Proposition

Removal of an arbitrary blocked clause preserves satisfiability.

Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause C in a CNF F, remove C from F.

Example

Consider $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$.
After removing either ($a \vee \bar{b} \vee \bar{c}$) or $(\bar{a} \vee c)$, the clause $(a \vee b)$ becomes blocked (no clause with either \bar{b} or \bar{a}). An extreme case in which BCE removes all clauses of a formula!
$B C E$ is confluent, i.e., has a unique fixpoint

- Blocked clauses stay blocked w.r.t. removal

Blocked Clause Elimination (BCE)

Definition (BCE)

While there is a blocked clause C in a CNF F, remove C from F.

Example

Consider $(a \vee b) \wedge(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee c)$.
After removing either ($a \vee \bar{b} \vee \bar{c}$) or $(\bar{a} \vee c)$, the clause $(a \vee b)$ becomes blocked (no clause with either \bar{b} or \bar{a}). An extreme case in which BCE removes all clauses of a formula!

Proposition

BCE is confluent, i.e., has a unique fixpoint

- Blocked clauses stay blocked w.r.t. removal

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

$$
\begin{aligned}
& \left(c_{1}\right) \\
& \left(\neg c_{1} \vee t_{1} \vee \neg t_{2}\right) \\
& \left(c_{1} \vee \neg t_{1}\right) \\
& \left(c_{1} \vee \neg t_{2}\right) \\
& \left(\neg o_{0} \vee t_{3} \vee c_{0}\right) \\
& \left(\neg o_{0} \vee \neg t_{3} \vee \neg c_{0}\right) \\
& \left(o_{0} \vee t_{3} \vee \neg c_{0}\right) \\
& \left(o_{0} \vee \neg t_{3} \vee c_{0}\right)
\end{aligned}
$$

$\left(t_{1} \vee \neg t_{3} \vee \neg c_{0}\right)$
$\left(\neg t_{1} \vee t_{3}\right)$
$\left(\neg t_{1} \vee c_{0}\right)$
$\left(t_{2} \vee \neg a_{0} \vee \neg b_{0}\right)$
$\left(\neg t_{2} \vee a_{0}\right)$
$\left(\neg t_{2} \vee b_{0}\right)$
$\left(\neg t_{3} \vee a_{0} \vee b_{0}\right)$
$\left(\neg t_{3} \vee \neg a_{0} \vee \neg b_{0}\right)$
$\left(t_{3} \vee a_{0} \vee \neg b_{0}\right)$
$\left(t_{3} \vee \neg a_{0} \vee b_{0}\right)$

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

$$
\begin{aligned}
& \left(c_{1}\right) \\
& \left(\neg c_{1} \vee t_{1} \vee \neg t_{2}\right) \\
& \left(\epsilon_{1} \vee \neg_{1}\right) \\
& \left(a_{1} \vee t_{2}\right) \\
& \left(\neg o_{0} \vee t_{3} \vee c_{0}\right) \\
& \left(\neg o_{0} \vee \neg t_{3} \vee \neg c_{0}\right) \\
& \left(o_{0} \vee t_{3} \vee \neg c_{0}\right) \\
& \left(o_{0} \vee \neg t_{3} \vee c_{0}\right)
\end{aligned}
$$

$\left(t_{1} \vee \neg t_{3} \vee \neg c_{0}\right)$
$\left(\neg t_{1} \vee t_{3}\right)$
$\left(\neg t_{1} \vee c_{0}\right)$
$\left(t_{2} \vee \neg a_{0} \vee \neg b_{0}\right)$
$\left(\neg t_{2} \vee a_{0}\right)$
$\left(\neg t_{2} \vee b_{0}\right)$
$\left(\neg t_{3} \vee a_{0} \vee b_{0}\right)$
$\left(\neg t_{3} \vee \neg a_{0} \vee \neg b_{0}\right)$
$\left(t_{3} \vee a_{0} \vee \neg b_{0}\right)$
$\left(t_{3} \vee \neg a_{0} \vee b_{0}\right)$

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

$$
\begin{aligned}
& \left(t_{1} \vee \neg t_{3} \vee \neg c_{0}\right) \\
& \left(\neg t_{1} \vee t_{3}\right) \\
& \left(\neg t_{1} \vee c_{0}\right) \\
& \left(t_{2} \vee \neg a_{0} \vee \neg b_{0}\right) \\
& \left(\neg t_{2} \vee a_{0}\right) \\
& \left(\neg t_{2} \vee b_{0}\right) \\
& \left(\neg t_{3} \vee a_{0} \vee b_{0}\right) \\
& \left(\neg t_{3} \vee \neg a_{0} \vee \neg b_{0}\right) \\
& \left(t_{3} \vee a_{0} \vee \neg b_{0}\right) \\
& \left(t_{3} \vee \neg a_{0} \vee b_{0}\right)
\end{aligned}
$$

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

$\left(t_{1} \vee \neg t_{3} \vee \neg \epsilon_{0}\right)$
$\left(\neg t_{1} \vee t_{3}\right)$
$\left(\neg t_{1} \vee c_{0}\right)$
$\left(t_{2} \vee \neg a_{0} \vee \neg b_{0}\right)$
$\left(\neg t_{2} \vee a_{0}\right)$
$\left(\neg t_{2} \vee b_{0}\right)$
$\left(\neg t_{3} \vee a_{0} \vee b_{0}\right)$
$\left(\neg t_{3} \vee \neg a_{0} \vee \neg b_{0}\right)$
$\left(t_{3} \vee a_{0} \vee \neg b_{0}\right)$
$\left(t_{3} \vee \neg a_{0} \vee b_{0}\right)$

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

$$
\begin{aligned}
& \left(c_{1}\right) \\
& \left(\neg c_{1} \vee t_{1} \vee \neg t_{2}\right) \\
& \left(c_{1} \vee \neg t_{1}\right) \\
& \left(\epsilon_{1} \vee t_{2}\right) \\
& \left.(\neg)_{0} \vee t_{3} \vee c_{0}\right) \\
& \left(\Theta_{0} \vee t_{3} \vee \epsilon_{0}\right) \\
& \left(\infty_{0} \vee t_{3} \vee \neg c_{0}\right) \\
& \left(\infty_{0} \vee \neg t_{3} \vee c_{0}\right)
\end{aligned}
$$

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

$$
\begin{aligned}
& \left(c_{1}\right) \\
& \left(\neg c_{1} \vee t_{1} \vee \neg t_{2}\right) \\
& \left(c_{1} \vee \neg t_{1}\right) \\
& \left(\epsilon_{1} \vee t_{2}\right) \\
& \left.(\neg)_{0} \vee t_{3} \vee c_{0}\right) \\
& \left(\Theta_{0} \vee t_{3} \vee \epsilon_{0}\right) \\
& \left(\infty_{0} \vee t_{3} \vee \neg c_{0}\right) \\
& \left(\infty_{0} \vee \neg t_{3} \vee c_{0}\right)
\end{aligned}
$$

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

BCE very effective on circuits [JärvisaloBiereHeule'10]

BCE converts the Tseiting encoding to Plaisted Greenbaum BCE simulates Pure literal elimination, Cone of influence and much more

Example of circuit simplification by BCE on CNF

Unhiding redundancy

Redundancy

Redundant clauses:

- Removal of $C \in F$ preserves unsatisfiability of F
- Assign $I \in C$ to false and check for a conflict in $F \backslash\{C\}$

Redundant literals:

- Removal of $I \in C$ nreserves satisfiability of F
- Assign $I^{\prime} \in C \backslash\{I\}$ to false and check if I is forced to false

Redundancy elimination during pre- and in-processing

- Distillation
- ReVivAI
- Unhiding

Redundancy

Redundant clauses:

- Removal of $C \in F$ preserves unsatisfiability of F
- Assign $I \in C$ to false and check for a conflict in $F \backslash\{C\}$

Redundant literals:

- Removal of $I \in C$ preserves satisfiability of F
- Assign $I^{\prime} \in C \backslash\{I\}$ to false and check if I is forced to false

Redundancy elimination during pre- and in-processing

- Distillation
- ReVivAl
- Unhiding

Redundancy

Redundant clauses:

- Removal of $C \in F$ preserves unsatisfiability of F
- Assign $I \in C$ to false and check for a conflict in $F \backslash\{C\}$

Redundant literals:

- Removal of $I \in C$ preserves satisfiability of F
- Assign $I^{\prime} \in C \backslash\{I\}$ to false and check if I is forced to false

Redundancy elimination during pre- and in-processing

- Distillation
[JinSomenzi2005]
- ReVivAl [PietteHamadiSaïs2008]
- Unhiding

Unhide: Binary implication graph (BIG)

unhide: use the binary clauses to detect redundant clauses and literals

$(\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge$
$(\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge$
$(\bar{g} \vee h) \wedge(\bar{a} \vee \bar{e} \vee h) \wedge(\bar{b} \vee \bar{c} \vee h) \wedge(a \vee b \vee c \vee d \vee e \vee f \vee g \vee h)$

Unhide: Transitive reduction (TRD)

transitive reduction: remove shortcuts in the binary implication graph

$(\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge$
$(\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge$

$$
(\bar{g} \vee h) \wedge(\bar{a} \vee \bar{e} \vee h) \wedge(\bar{b} \vee \bar{c} \vee h) \wedge(a \vee b \vee c \vee d \vee e \vee f \vee g \vee h)
$$

TRD
$g \rightarrow f \rightarrow h$

Unhide: Hidden tautology elimination (HTE) (1)

HTE removes clauses that are subsumed by an implication in BIG

Unhide: Hidden tautology elimination (HTE) (2)

HTE removes clauses that are subsumed by an implication in BIG

Unhide: Hidden literal elimination (HLE)

HLE removes literal using the implication in BIG

HLE
all but e imply h
also b implies e

Conclusions: state-of-the-art SAT solver

Key contributions to SAT search engine:

- adding conflict clauses (grasp)
- restart strategies
- 2-watch pointers and VSIDS (zChaff)
- efficient implementation (Minisat)
- variable elimination (SatElite) [GomesSC'97,LubySZ'93] [MoskewiczMZZM'01]
[EenSörensson'03]
[EenBiere'05]
- phase-saving (Rsat)
[PipatsrisawatDarwiche'07]

- removal of redundant clauses and literals
- removal of blocked clauses
- unhiding redundancy

Conclusions: state-of-the-art SAT solver

Key contributions to SAT search engine:

- adding conflict clauses (grasp)
- restart strategies
- 2-watch pointers and VSIDS (zChaff)
- efficient implementation (Minisat)
- variable elimination (SatElite)
[GomesSC'97,LubySZ'93]
[MoskewiczMZZM'01]
[EenSörensson'03]
[EenBiere'05]
- phase-saving (Rsat)
[PipatsrisawatDarwiche'07]
Recent progress: pre- and in-processing
- removal of redundant clauses and literals [JinSomenzi'05]
- removal of blocked clauses [JärvisaloBiereHeule'10]
- unhiding redundancy [HeuleJärvisaloBiere'11]

Cactus plot: Lingeling 〔Biere'10] contains all features

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20 mn timeout

State-of-the-art SAT Solving

Marijn J. H. Heule
University of Texas

April 16, 2012 @ ACL2

