
On enumeration of monadic
predicates and n-ary relations

Harsh Raju Chamarthi
Northeastern University

November 30, 2012

1 / 1

Problem

Goal
Find counterexamples to a given formula in ACL2.
(and hyp1 · · · hypn)−→ concl

Given a set of hypi enumerate all satisfying assignments

2 / 1

Problem

Goal
Find counterexamples to a given formula in ACL2.
(and hyp1 · · · hypn)−→ concl
Given a set of hypi enumerate all satisfying assignments

3 / 1

Problem

Goal
Find counterexamples to a given formula in ACL2.
(and hyp1 · · · hypn)−→ concl
Given a set of hypi enumerate all satisfying assignments

4 / 1

Background - Type sets

I 14 Primitive types
I Boolean combinations
I Represented as Bit strings
I Limited Expressibility

5 / 1

Background - Defdata framework

Defdata adds
I Product types

• Constructors: cons, /, complex

I Inductive types

I NOT, AND combinations not supported
I Better, but still limited expressibility

Definition
enum expression gives an enumerating characterization of a variable.
enum set is a disjunction of enumerator expressions, whose meaning
is the union of the respective type domains characterized by the
enum expressions.

6 / 1

Background - Defdata framework
Defdata adds

I Product types
• Constructors: cons, /, complex

I Inductive types

foo is a defdata type iff

1. predicate foop is defined and
2. either enumerator nth-foo or *foo-values* is defined

Examples
Product type -- (defdata bar (cons (/ 1 pos) nat-list))

Inductive type -- (defdata loi (oneof nil (cons integer loi)))

I NOT, AND combinations not supported
I Better, but still limited expressibility

Definition
enum expression gives an enumerating characterization of a variable.
enum set is a disjunction of enumerator expressions, whose meaning
is the union of the respective type domains characterized by the
enum expressions.

7 / 1

Background - Defdata framework

Defdata adds
I Product types

• Constructors: cons, /, complex

I Inductive types

I NOT, AND combinations not supported
I Better, but still limited expressibility

Definition
enum expression gives an enumerating characterization of a variable.
enum set is a disjunction of enumerator expressions, whose meaning
is the union of the respective type domains characterized by the
enum expressions.

8 / 1

Generative/Inductive Types (Different representation)
As much as possible express each type as an Inductive type with base
elements and a finite set of generators.

posp : Base = {1} Gen = {S}
evenp : Base = {0} Gen = {S ◦ S}

/3p : Base = {0} Gen = {S ◦ S ◦ S}
string-listp : Base = {nil} Gen = {λx.(cons a x) |(stringp a)}

I A type P : [Base : a, Gen : f] can be enumerated by listing
members in a manner reminiscent of Herbrand Universe i.e.

{a, fa, ffa, fffa, ffffa . . .}
I Clearly an enumerator for P can be easily derived:

(nth-P n) = if (zp n) a (f (nth-P(1-n)))
9 / 1

Generative Types (continued ...)
The [Base, Gen] representation helps in deriving AND combinations.

evenp ∧ /3p ≡ Base = {0} Gen = S ◦ S ◦ S ◦ S ◦ S ◦ S

Heuristic - Take intersection of bases and the LCM of the generators.

NOT still not so amenable.
Source predicate - push the negation all the way inside i.e.

(~str-listp x) =
if (endp x)

(not (equal x nil))
(or (not (strp (car x)))

(~str-listp (cdr x)))

Base = ATOM− {nil} ∪ (cons a L) |(strp a)

Gen = (cons a) |(strp a)

10 / 1

Monadic Recursive Predicates
I Foregoing language for "types" still not expressive enough.

e.g. orderedp, no-duplicatesp
(no-duplicatesp X) =

if (endp X)
T

(and (not (in (car X) (cdr X)))
(no-duplicatesp (cdr X)))

I Dependent Recursion

no-duplicatesp : Base = {nil}, Gen = λx.(cons a x) |a/∈x

To characterize no-duplicatesp, need to know a enumerating
characterization of n-ary relations!!

11 / 1

Binary Relations
(in a X)

I Find all< a,X > pairs that satisfy (in a X) 6= nil

I Given X, find all a that satisfy (in a X) 6= nil

I Given a, find all X that satisfy (in a X) 6= nil

a |a∈X
Natively supported.

X |a∈X
Use a FIXing Rule to obtain an enum
expression!
X = (insert a X')

x |x<y
Use x = (y− z) |z>0

y |x<y
Use y = (x+ z) |z>0

Fix Rules
Like Elim rules. (defthm in-fix2 (in a (insert a X))) Eliminate a
relation in favor of enum expressions
e.g. = f(. . .) or inf(. . .).

12 / 1

Binary Relations
(in a X)

a |a∈X
Natively supported.

X |a∈X
Use a FIXing Rule to obtain an enum
expression!
X = (insert a X')

x |x<y
Use x = (y− z) |z>0

y |x<y
Use y = (x+ z) |z>0

Fix Rules
Like Elim rules. (defthm in-fix2 (in a (insert a X))) Eliminate a
relation in favor of enum expressions
e.g. = f(. . .) or inf(. . .).

13 / 1

Binary Relations
(in a X)

a |a∈X
Natively supported.

X |a∈X
Use a FIXing Rule to obtain an enum
expression!
X = (insert a X')

x |x<y

Use x = (y− z) |z>0

y |x<y

Use y = (x+ z) |z>0

Fix Rules
Like Elim rules. (defthm in-fix2 (in a (insert a X))) Eliminate a
relation in favor of enum expressions
e.g. = f(. . .) or inf(. . .).

14 / 1

Binary Relations
(in a X)

a |a∈X
Natively supported.

X |a∈X
Use a FIXing Rule to obtain an enum
expression!
X = (insert a X')

x |x<y
Use x = (y− z) |z>0

y |x<y
Use y = (x+ z) |z>0

Fix Rules
Like Elim rules. (defthm in-fix2 (in a (insert a X))) Eliminate a
relation in favor of enum expressions
e.g. = f(. . .) or inf(. . .).

15 / 1

Binary Relations
(in a X)

a |a∈X
Natively supported.

X |a∈X
Use a FIXing Rule to obtain an enum
expression!
X = (insert a X')

x |x<y
Use x = (y− z) |z>0

y |x<y
Use y = (x+ z) |z>0

Fix Rules
Like Elim rules. (defthm in-fix2 (in a (insert a X))) Eliminate a
relation in favor of enum expressions
e.g. = f(. . .) or inf(. . .).

16 / 1

17 / 1

On deriving R−1

(subsetp X Y) = (if (endp X)
T

(and (in (car X) Y)
(subsetp (cdr X) Y)))

(subsetp−2 n X) = (if (endp X)
(nth-all n)

(insert (car X)
(subsetp−2 n (cdr X)))

(subsetp−1 n Y) = (if (zp n)
nil

(cons (nth* n1 Y)
(subsetp−1 p n2 Y))

Probably doable, but more elegant to let user specify ELIM rules

elim for X : X = Y− Z

elim for Y : Y = X ∪ Z
18 / 1

19 / 1

20 / 1

21 / 1

Monadic Predicates (more complex)

Ques: Can all monadic predicates be represented in be represented
in [Base, Gen] form?
Consider squarep and primep

(squarep x) = (sq1 x x)
(sq1 b x) = if (zp b)

nil
if b*b = x

T
(sq1 b-1 x)

Base = ? Gen = ??
(nth-square n) = (* n n)

Fix Rule
(posp x) => (squarep (* x x))

(primep x) = (nd X) = 2
= (Pr1 x x-1)

(Pr1 x y) = if y = 1
T

(and (not (div x y))
(pr! x y-1))

(nth-prime n) = ...

Fix Rule ??

R(x, f(x), g(x)) is a problem to enumerate ...

22 / 1

Monadic Predicates (more complex)

Ques: Can all monadic predicates be represented in be represented
in [Base, Gen] form?
Consider squarep and primep

(squarep x) = (sq1 x x)
(sq1 b x) = if (zp b)

nil
if b*b = x

T
(sq1 b-1 x)

Base = ? Gen = ??
(nth-square n) = (* n n)

Fix Rule
(posp x) => (squarep (* x x))

(primep x) = (nd X) = 2
= (Pr1 x x-1)

(Pr1 x y) = if y = 1
T

(and (not (div x y))
(pr! x y-1))

(nth-prime n) = ...

Fix Rule ??

R(x, f(x), g(x)) is a problem to enumerate ...

23 / 1

Equations and Inverses

From
X |g(x)=y

we would like to derive the es:= g−(y)

From (append X Y) = Z we would like to
derive es: (difference Z Y)|Y⊂Z

24 / 1

Mechanizable?

L = (zip l1 l2) = (if (or (endp l1)
(end p l2))

nil
(cons (cons (car l1) (car l2))

(zip cdr l1) (cdr l2)))

(l1, l2) = (unzip L) = (if (endp L)
(mv nil nil)

(mv-let (l1 l2)
(unzip (cdr L))

(b* ((cons a b) (car L))
(mv (cons a1 l1) (cons b l2)))))

Inverse/Elim Rule for zip
(zip (strip-cars L) (strip-cdrs L)) = L

25 / 1

Mechanizable?

L = (zip l1 l2) = (if (or (endp l1)
(end p l2))

nil
(cons (cons (car l1) (car l2))

(zip cdr l1) (cdr l2)))

(l1, l2) = (unzip L) = (if (endp L)
(mv nil nil)

(mv-let (l1 l2)
(unzip (cdr L))

(b* ((cons a b) (car L))
(mv (cons a1 l1) (cons b l2)))))

Inverse/Elim Rule for zip
(zip (strip-cars L) (strip-cdrs L)) = L

26 / 1

A ternary relation

(shufflep x y z) =
(if (endpz)

x = y = z = nil
(if (endp x)

y = z
(if (endp y)

x = z
(or
(and (car x) = (car z)

(shufflep x' y z')
(and ((car y) = (car z)

(shufflep x y' z'))))

z = (shuffle x y) =
if (and (endp x) (endp y))

nil
if (endp x)

y
if (endp y)

x
(choose
(cons (car x)

(shuffle x' y))
(cons (car y)

(shuffle x y')))

Ques: Under what circumstances can this derivation be mechanized?

27 / 1

Interesting example...

(adj-listp G) =
(and (symbol-alistp G)

(adj-listlp G (strip-cars G))

(adj-list1p G dom) =
(if (end G)

T
(and (consp (car G))

(subsetp (cdar G) dom)
(adj-list) P (cdr G) dom)

Method 1: Thread and derive

Base = {nil} Gen = λg.(c (c a b) g) |b⊂dom

Method 2: Staged enumeration. Apply Fix Rules...

Method 3: Rewrite G = (zip dom edges-list). Derive dom is
symbol-listp. Then derive:
(R el dom) = (if (endp el)

T
(and (subsetp (car el) dom)

(R (cdr el) dom))

28 / 1

Negation and Conjunction of Monadic Predicates
(no-duplicatesp X) => (orderep X)

Counterexamples: Enumerate (and (no-dup X) (not (ordered X)))

(no-dup X) =
(if (endp X)

T
(if (endp (cdr X))

T
(if (> (car X) (cadr X))

(and (not (in (car X) X'))
(no-dup X'))

(and (not (in (car X) X'))
(no-dup X')))))

Negate!
~(orderedp X) =
(if (endp X)

nil
(if (endp (cdr X))

nil
(if (car X) > (cadr X)

T
(~orderedp X'))))

Match the IF structure and merge the two predicates to get:

(|no-dup & ~orderedp| X) =
(if (endp X)

(and T nil)
(if (endp (cdr X))

(and T nil)
(if (> (car X) (cadr X))

(and (not (in (car X) (cdr X)))
(no-dup (cdr X)))

(and (not (in (car X) (cdr X)))
(|no-dup & ~orderedp| (cdr X))))))

29 / 1

Negation and Conjunction of Monadic Predicates
(no-duplicatesp X) => (orderep X)

Counterexamples: Enumerate (and (no-dup X) (not (ordered X)))

(no-dup X) =
(if (endp X)

T
(if (endp (cdr X))

T
(if (> (car X) (cadr X))

(and (not (in (car X) X'))
(no-dup X'))

(and (not (in (car X) X'))
(no-dup X')))))

Negate!
~(orderedp X) =
(if (endp X)

nil
(if (endp (cdr X))

nil
(if (car X) > (cadr X)

T
(~orderedp X'))))

Match the IF structure and merge the two predicates to get:
(|no-dup & ~orderedp| X) =
(if (endp X)

(and T nil)
(if (endp (cdr X))

(and T nil)
(if (> (car X) (cadr X))

(and (not (in (car X) (cdr X)))
(no-dup (cdr X)))

(and (not (in (car X) (cdr X)))
(|no-dup & ~orderedp| (cdr X))))))

30 / 1

Recap

I Generative types
• Base, Gen representation
• AND
• NOT

I Richer Types
• Monadic Predicates build on n-ary relations
• Instances of relations R(x, x) are hard...

I Need Elim/Fix/Inverse Rules from the user to program the
Cgen capability

I Staged Enumeration (Dependency graph dictated by Rules
above)

31 / 1

Finally...

I Find a corresponding "The Method" for CGen framework.
I Interactive Non-Theorem Disproving

same philosophy as ACL2, more integration with ACL2.
I Fundamental Questions.

Applications

I Lemma generation
I Internal Heuristics (Generalize, Induction)
I Counterexample generation

Thank You!

32 / 1

Finally...

I Find a corresponding "The Method" for CGen framework.
I Interactive Non-Theorem Disproving

same philosophy as ACL2, more integration with ACL2.
I Fundamental Questions.

Applications

I Lemma generation
I Internal Heuristics (Generalize, Induction)
I Counterexample generation

Thank You!

33 / 1

