On enumeration of monadic predicates and n-ary relations

Harsh Raju Chamarthi Northeastern University

November 30, 2012

Problem

Goal

Find counterexamples to a given formula in ACL2. (and hyp ${ }_{1} \cdots$ hyp $_{n}$) \longrightarrow concl

Problem

Goal

Find counterexamples to a given formula in ACL2.
(and hyp ${ }_{1} \cdots$ hyp $_{n}$) \longrightarrow concl
Given a set of hyp ${ }_{i}$ enumerate all satisfying assignments

Problem

Goal

Find counterexamples to a given formula in ACL2. (and hyp ${ }_{1} \cdots$ hyp $_{n}$) \longrightarrow concl
Given a set of hyp $_{i}$ enumerate all satisfying assignments

Background - Type sets

- 14 Primitive types
- Boolean combinations
- Represented as Bit strings
- Limited Expressibility

Background - Defdata framework

Defdata adds

- Product types
- Constructors: cons, /, complex
- Inductive types

Background - Defdata framework

Defdata adds

- Product types
- Constructors: cons, /, complex
- Inductive types
foo is a defdata type iff

1. predicate foop is defined and
2. either enumerator nth-foo or *foo-values* is defined

Examples
Product type -- (defdata bar (cons (/ 1 pos) nat-list))
Inductive type -- (defdata loi (oneof nil (cons integer loi)))

Background - Defdata framework

Defdata adds

- Product types
- Constructors: cons, /, complex
- Inductive types
- NOT, AND combinations not supported
- Better, but still limited expressibility

Definition

 enum expression gives an enumerating characterization of a variable. enum set is a disjunction of enumerator expressions, whose meaning is the union of the respective type domains characterized by the enum expressions.
Generative/Inductive Types (Different representation)

 As much as possible express each type as an Inductive type with base elements and a finite set of generators.$$
\begin{array}{rll}
\text { posp : Base } & =\{1\} & \text { Gen }=\{S\} \\
\text { evenp: Base } & =\{0\} & \text { Gen }=\{S \circ S\} \\
/ 3 p: \text { Base } & =\{0\} & \text { Gen }=\{S \circ S \circ S\} \\
\text { string-listp : Base } & =\{\text { nil }\} & \text { Gen }=\left\{\lambda x .\left.(\text { consax })\right|_{(\text {stringp a })}\right\}
\end{array}
$$

- A type P : [Base : a, Gen : $f]$ can be enumerated by listing members in a manner reminiscent of Herbrand Universe i.e.

$$
\{a, f a, f f a, f f f a, f f f f a \ldots\}
$$

- Clearly an enumerator for P can be easily derived: (nth-P n) $=$ if (zp n) a (f (nth-P(1-n)))

Generative Types (continued ...)

The [Base, Gen] representation helps in deriving AND combinations.

$$
\text { evenp } \wedge / 3 p \equiv \text { Base }=\{0\} \quad G e n=S \circ S \circ S \circ S \circ S \circ S
$$

Heuristic - Take intersection of bases and the LCM of the generators.

NOT still not so amenable.
Source predicate - push the negation all the way inside i.e.

```
(~str-listp x) =
if (endp x)
    (not (equal x nil))
    (or (not (strp (car x)))
        (~str-listp (cdr x)))
\[
\begin{aligned}
\text { Base } & =\text { ATOM }-\left.\{\text { nil }\} \cup(\text { cons a L })\right|_{(\text {strp a })} \\
\text { Gen } & =\left(\text { cons a) }\left.\right|_{(\text {strp a })}\right.
\end{aligned}
\]
```


Monadic Recursive Predicates

- Foregoing language for "types" still not expressive enough. e.g. orderedp, no-duplicatesp

```
(no-duplicatesp X) =
    if (endp X)
        T
    (and (not (in (car X) (cdr X)))
        (no-duplicatesp (cdr X)))
```

- Dependent Recursion

$$
\text { no-duplicatesp }: \text { Base }=\{\text { nil }\}, \text { Gen }=\lambda x .\left.(\text { cons } a x)\right|_{a \notin x}
$$

To characterize no-duplicatesp, need to know a enumerating characterization of n-ary relations!!

Binary Relations

(in a X)

- Find all $<a, X>$ pairs that satisfy (in a x) \neq nil
- Given X, find all a that satisfy (in a x) \neq nil
- Given a, find all X that satisfy (in a x) \neq nil

Binary Relations

(in a X)
a $\left.\right|_{a \in X}$
Natively supported.
$\left.X\right|_{a \in X}$
Use a FIXing Rule to obtain an enum expression!
X = (insert a X^{\prime})

Binary Relations

(in a X)
a $\left.\right|_{a \in X}$
Natively supported.
$\left.x\right|_{x<y}$

$$
\left.X\right|_{a \in X}
$$

Use a FIXing Rule to obtain an enum expression!

$$
X=\text { (insert a } X^{\prime} \text {) }
$$

$$
\left.y\right|_{x<y}
$$

Binary Relations

(in a X)
a $\left.\right|_{a \in X}$
Natively supported.
$\left.X\right|_{a \in X}$
Use a FIXing Rule to obtain an enum expression!
X = (insert a X^{\prime})

$$
\begin{aligned}
& \left.y\right|_{x<y} \\
& \text { Use } y=\left.(x+z)\right|_{z>0}
\end{aligned}
$$

Binary Relations

(in a X)
a $\left.\right|_{a \in X}$
Natively supported.
$\left.X\right|_{a \in X}$
Use a FIXing Rule to obtain an enum expression!

$$
\left.x=\text { (insert } a x^{\prime}\right)
$$

$\left.x\right|_{x<y}$
Use $x=\left.(y-z)\right|_{z>0}$

$$
\begin{aligned}
& \left.y\right|_{x<y} \\
& \text { Use } y=\left.(x+z)\right|_{z>0}
\end{aligned}
$$

Fix Rules
Like Elim rules. (defthm in-fix2 (in a (insert a x))) Eliminate a relation in favor of enum expressions e.g. $=f(\ldots)$ or $\inf (\ldots)$.

Enumerating Relations

$$
\begin{aligned}
& \langle X, Y, Z\rangle\left|\begin{array}{|c}
\langle\Omega, z, \Omega, z \\
R(x, y, z)
\end{array} \equiv\right|_{\begin{array}{l}
x \in R^{-1}(y, z) \\
Q(y, z)
\end{array}} \text { or } x=R^{-1}(y, z, n) \\
& \left.\equiv x\left|=R^{-1}(y, z, u),\langle y, z\rangle\right| \frac{\alpha \pi, \Omega z}{Q}, \quad \mid y, z\right) \\
& \equiv \quad . \quad \times \frac{\operatorname{tg}(z)}{P(z)} \\
& \text { Staged } \\
& \text { Enuoneration! } \\
& \text { Monadic }
\end{aligned}
$$

On deriving R^{-1}

```
( subsetp \(X\) Y) \(=(\) if \(\underset{T}{(\text { endp } X)}\)
(and (in (car X) Y)
( subsetp (cdr X) Y)))
```

```
\(\left(\right.\) subsetp \(^{-2} \mathrm{n}\) X) \(=\) (if (endp X)
                                (nth-all n)
(insert (car X)
                        ( subsetp \(\left.{ }^{-2} \mathrm{n}(\operatorname{cdr} \mathrm{X})\right)\) )
```

$\left(\right.$ subsetp $\left.^{-1} \mathrm{n} Y\right)=($ if $\underset{\text { nil }}{\operatorname{zp} \mathrm{n}})$
(cons (nth* n1 Y)
($\left.\operatorname{subsetp}^{-1} \mathrm{p} n 2 \mathrm{Y}\right)$)

Probably doable, but more elegant to let user specify ELIM rules elim for $X: \quad X=Y-Z$
elim for $Y: \quad Y=X \cup Z$

Monadic Predicates (continued...)

$$
\begin{aligned}
& x \left\lvert\, \frac{\text { lp }}{(\text { ordered } x)}\right. \\
& \text { ordered } p x=\text { if } \text { cor (end } p x \text {) } \\
& \text { (} \operatorname{endp} p(c d r \times)) \\
& (\operatorname{and}(\leqslant(\operatorname{car} x)(\operatorname{calv} x) \\
& \text { Cordevedp Codex } \\
& \{o r\} \equiv x \left\lvert\, \begin{array}{l|l|l}
\text { Emp nil } & \text { tee } & \text { top } \\
\hline \begin{array}{l|l|l}
\operatorname{Condp} *
\end{array} & \begin{array}{l}
\operatorname{cousp} p \\
\operatorname{eamp}(d r x)
\end{array} & \prime \prime
\end{array}\right. \\
& \{\cdots\} \equiv x \left\lvert\, \begin{array}{l|l|l}
=\text { til } & =(\text { cons a nil) } & \begin{array}{l}
\text { cons } a(\text { cons } b \times 3))
\end{array} \\
\hline T & T & \begin{array}{l}
a \leq b \\
\text { ordered } p \times 3
\end{array}
\end{array}\right. \\
& \text { Ordered: Base }=\{\text { nil, }[a]\} \quad G e n=\lambda y \text {. cons }\left.a(\text { cons by })\right|_{a \leq b}
\end{aligned}
$$

Monadic Predicates (continued...)

$$
\begin{aligned}
& x \left\lvert\, \frac{\text { tl }}{\text { (ordered } x)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ordered: Base }=\{\text { nil, }[a]\} \quad G e n=\lambda y \text {. (cons } a(\text { cons by }))\left.\right|_{a \leq b}
\end{aligned}
$$

Monadic Pred (AND)
or, Thread the 3 functions i.e take LCM

Stlpano-dupnordp: Base $=\left\{\right.$ nil, cons a nil) $\left.\left.\left.\right|_{\text {(strip a })}\right\}\right\}$
conjunction conjunction predicate $G e n=\lambda y$. cons a

$$
\quad G e n=\lambda y \text {. (cons } a, \text { cons } b y)) \left\lvert\, \begin{aligned}
& \text { strep } a, b \\
& a<b \\
& b \notin y
\end{aligned}\right.
$$

Monadic Predicates (more complex)

Ques: Can all monadic predicates be represented in be represented in [Base, Gen] form?
Consider squarep and primep

$$
\begin{array}{r}
\left(\begin{array}{rl}
(\operatorname{squarep} x) \\
(\operatorname{sq1} b x) & = \\
\text { if }\left(\begin{array}{ll}
\text { sq1 } & (\text { zp } b)
\end{array}\right. \\
\text { nil }
\end{array}\right. \\
\text { if } b^{\star} b=x \\
T \\
\\
(\text { sq1 } b-1 x)
\end{array}
$$

$$
\begin{aligned}
(\text { primep } x) & =(\operatorname{nd} x)=2 \\
& =(\operatorname{Pr} x \times-1)
\end{aligned}
$$

$$
(\operatorname{Pr} 1 x y)=\text { if } \underset{T}{y}=1
$$

$$
\begin{gathered}
(\text { and }(\operatorname{not}(\operatorname{div} x y)) \\
(p r!x y-1))
\end{gathered}
$$

Base = ? Gen = ??
(nth-square n) = (* n n)
Fix Rule
(posp x) => (squarep (*x x))
(nth-prime n) = ...
Fix Rule ??

Monadic Predicates (more complex)

Ques: Can all monadic predicates be represented in be represented in [Base, Gen] form?
Consider squarep and primep

$$
\begin{aligned}
& \text { (sq1 b-1 } \mathrm{x} \text {) }
\end{aligned}
$$

Base = ? Gen = ??
(nth-square n) = (* n n)
Fix Rule

$$
\text { (posp } x \text {) => (squarep (* } x \times \text {)) }
$$

$\begin{aligned}(\text { primep } x) & =\left(\begin{array}{lll}(n d x) & =2 \\ & =(\operatorname{Pr} 1 \times x-1)\end{array}\right. \\ & =1\end{aligned}$
$(\operatorname{Pr} 1 \times y)=$ if $\underset{T}{y}=1$
(nth-prime n) = ...
(and $(\operatorname{not}(\operatorname{div} x$ x $y))$
$R(x, f(x), g(x))$ is a problem to enumerate ...

Equations and Inverses

From

$$
\left.X\right|_{g(x)=y}
$$

we would like to derive the es: $=g^{-}(y)$

From (append $X Y$) $=Z$ we would like to derive es: (difference $Z Y$) $\left.\right|_{Y \subset Z}$

Mechanizable?

$(11,12)=($ unzip L) $=($ if (endp L) $(\mathrm{mv}$ nil nil) (mv-let (ll linz) (cdr L))
(b* ((cons a b) (car L))
(mv (cons a1 l1) (cons b l2)))))

Mechanizable?

$\mathrm{L}=($ zip l1 l2) $=($ if (or (endp l1) $)$

$$
\begin{gathered}
\text { nil }(\operatorname{cons}(\operatorname{cons}(\operatorname{car} 11)(\operatorname{car} 12))) \\
(\operatorname{zip} \operatorname{cdr} 11)(\operatorname{cdr} 12)))
\end{gathered}
$$

 (mv-let (ll li2) (cdr L)) (b* ((cons a b) (car L)) (mv (cons a1 l1) (cons b l2)))))

Inverse/Elim Rule for zip
(zip (strip-cars L) (strip-cdrs L)) = L

A ternary relation

```
(shufflep x y z) =
(if (endpz)
    \(\mathrm{x}=\mathrm{y}=\mathrm{z}=\mathrm{nil}\)
\((\) endp x\()\)
(if (endp x)
(if \(y=z\)
(if \(\underset{x=}{(\operatorname{endp}} \mathrm{y}\) )
(or
    (and (car \(x\) ) \(=\left(\begin{array}{ll}\text { car } z) \\ (s h u f f l e p ~ & x^{\prime} \\ \left.\text { y } z^{\prime}\right)\end{array}\right.\)
    (and \(\left(\begin{array}{c}(\operatorname{car} y)=(\operatorname{car} z) \\ \left.\left.\left.\left(\text { shufflep } x y^{\prime} z^{\prime}\right)\right)\right)\right)\end{array}\right.\)
```

```
z = (shuffle x y) =
if (and (endp x) (endp y))
    nil
if (endp x)
if \({ }_{x}^{y}\) endp \(y\) )
    (choose
```


Ques: Under what circumstances can this derivation be mechanized?

Interesting example...

```
(adj-listp G) =
(and (symbol-alistp G)
    (adj-listlp G (strip-cars G))
```

Method 1: Thread and derive

$$
\text { Base }=\{\text { nil }\} \quad \text { Gen }=\left.\lambda g \cdot(c(c a b) g)\right|_{b \subset d o m}
$$

Method 2: Staged enumeration. Apply Fix Rules...

Method 3: Rewrite G = (zip dom edges-list). Derive dom is symbol-listp. Then derive:

$$
\begin{aligned}
(\text { R el dom })= & (\text { if }(\text { endp el) } \\
\text { T } & \\
& (\text { and }(\text { subsetp }(\text { car el }) \text { dom }) \\
& (R(\text { cdr el) dom) })
\end{aligned}
$$

Negation and Conjunction of Monadic Predicates

(no-duplicatesp X) => (orderep X)

Counterexamples: Enumerate (and (no-dup X) (not (ordered X)))

```
(no-dup X) =
    (if (endp (cdr x))
        (if (> (car X) (cadr X))
        (and (not (in (car X) X'))
    Negate!
    ~(orderedp X) =
```

 Match the IF structure and merge the two predicates to get:

Negation and Conjunction of Monadic Predicates

(no-duplicatesp X) => (orderep X)

Counterexamples: Enumerate (and (no-dup X) (not (ordered X)))

```
(no-dup X) =
        (if (endp (cdr X))
        (if (> (car X) (cadr X))
        (and (not (in (car X) X'))
    Negate!
    ~(orderedp X) =
    (if (endp X)
    nil
    (if (endp (cdr X))
        nil
    (if (car X) > (cadr X)
    (~orderedp X'))))
```

 Match the IF structure and merge the two predicates to get:
 \((\) (no-dup \& ~orderedp|X) \(=\)
 (and T nil)
 (if (endp (cdr X))
 (and T nil)

(and (not (in (car X) (cdr X)))
(|no-dup \& ~orderedp| (cdr X))))))

Recap

- Generative types
- Base, Gen representation
- AND
- NOT
- Richer Types
- Monadic Predicates build on n -ary relations
- Instances of relations $R(x, x)$ are hard...
- Need Elim/Fix/Inverse Rules from the user to program the Cgen capability
- Staged Enumeration (Dependency graph dictated by Rules above)

Finally...

- Find a corresponding "The Method" for CGen framework.
- Interactive Non-Theorem Disproving same philosophy as ACL2, more integration with ACL2.
- Fundamental Questions.

Applications

- Lemma generation
- Internal Heuristics (Generalize, Induction)
- Counterexample generation

Finally...

- Find a corresponding "The Method" for CGen framework.
- Interactive Non-Theorem Disproving same philosophy as ACL2, more integration with ACL2.
- Fundamental Questions.

Applications

- Lemma generation
- Internal Heuristics (Generalize, Induction)
- Counterexample generation

Thank You!

