Implementing system calls in the

Y86 model

Soumava Ghosh



WHAT STARTS HERE CHANGES THE WORLD

System Calls

* The standard method for user mode programs
to request services from the OS kernel.

* Execution involves a change in privilege level,
and transfer of control to the kernel which
executes certain instructions as per the
programs requirement and returns control to
the user mode (with the desired result).



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

System Calls (cont.)

» User Mode program calls open()
 Subroutine call to __libc_open

e libc_open is the libc wrapper

e Multiple macros expand to invoke assembly code that contains the syscall
instruction

o System call id (__NR_open = 3) expected in %eax, other parameters in %edi
%esi, %edx registers.

e Kernel finishes up its work and calls sysret, that returns the control back to
the user mode.

e Faster transfer of control to kernel (as compared to earlier INT 80H) J




WHAT STARTS HERE CHANGES THE WORLD

Modeling system calls

* Programs that run on the Y86 model are user
mode programs

e Need a mechanism to interact with the kernel from
ACL2, and retrieve results

e Will not be modeling the kernel mode code that
performs the actual action of the system call - our
syscall instruction will be a combination of the

actual syscall (UM) + sysret (KM).



WHAT STARTS HERE CHANGES THE WORLD

Options considered

o ACL2 sys-call:

— Executes system commands as in a shell
— Not actually a direct system call
— Does not support interactive input

e CLISP modules:
— POSIX and OS modules have methods that map to

most Unix system calls

— Preferred Common Lisp for ACL2 is CCL, which
wouldn’t have these modules - so a CLISP option

wouldn’t be the best solution



WHAT STARTS HERE CHANGES THE WORLD

Options considered (contd.)

* CCL Foreign Function Interface (FFI)

— Enables Common Lisp code to call functions
outside of Lisp (e.g. C libraries)

— FFI interface translator provides information about
the entry point, areument and return types

— Lisp data should be copied to a foreign
representation before calling the foreign function
(eq. string =2 pointer)

— Supports interactive console and file input



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

CLISP Foreign Function Interface

* Load libraries

(ccl::open-shared-library “/path/to/library.dylib”)
#<SHLIB /path/to/library.dylib #x30200000E76D>

* List entry points

(ccl::external “ _write”)
#<EXTERNAL-ENTRY-POINT “ write” (#x00007FFF8FBBO4AQ) /
usr/lib/system/libsystem kernel.dylib #3020007138CD>

* Convert to foreign data types

(setq ptr (ccl::make-cstring “xyz”))
#<A Foreign Pointer #x1000EOQ>



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

CCL FFI (contd.)

* Allocate memory for reading in data

(multiple-value-bind (lstr 1lptr)
(ccl::make-heap-ivector nbytes '(unsigned-byte 8))
(setqg str 1lstr)
(setqg ptr 1lptr))

e Invoke entry points
(external-call “ write” :unsigned-int 1 :address
ptr :unsigned-int nbytes)
Hello NIL



WHAT STARTS HERE CHANGES THE WORLD

Making system calls from ACL2

* Every POSIX system has the syscall() API
defined as below:

int syscall (int number, ...);

* The first parameter indicates the system call id,
and the subsequent variable arcuments are
mandatory arguments of the particular system

call



WHAT STARTS HERE CHANGES THE WORLD

Making system calls from ACL2 (contd.)

* Observation: It looks like loading the system
library is not required as it was found to always

be loaded.

* This works out well as the name and location of
the system library could differ across systems.



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

The prototype

* [nitial prototype includes the 4 most basic system

calls:

— int open(const char *path, int oflags)
— int close(int filedes)
— size t read(int fildes, void *buf, size_ t nbytes)

— size t write(int fildes, const void *buf, size t
nbytes)

e Raw lisp code was written to use the CCL FFI to
invoke the system calls and return the required
data in a native lisp format.



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

The prototype (contd.)

Example: the write() system call

;; size t write(int fildes, const void *buf, size t nbytes)
(defun syscall-write (clk filedes buffer nbytes)
(declare (ignore clk))
(setq ptr (ccl::make-cstring buffer))
(setq ret (ccl::external-call "syscall"
:unsigned-int 1
:unsigned-int filedes
:address ptr
:unsigned-int nbytes
:unsigned-int))
(ccl::dispose-heap-ivector ptr)
(cons ret nil))



WHAT STARTS HERE CHANGES THE WORLD

The prototype (contd.)

* The ACL2 interface consists of a stub definition of
the same methods as the common lisp ones.

* The model restricts the theorem prover from
proving anything else other than the theorems that
have been explicitly stated about the stubs. (or
more with Matt’s latest work)

o Matt will talk about this part in detail later.



WHAT STARTS HERE CHANGES THE WORLD

Integrating with the Y86 model

e The syscall instruction requires the arrangement
of parameters in the following format:

— System call id in %eax

— Parameters in %edi, %esi, %edx respectively

* An instruction #xDO0 was added to the Y86-
basic model. On %eip = #xDO, the y86-step

function calls into the y86-syscall method, the
syscall handler




WHAT STARTS HERE CHANGES THE WORLD

Integrating with the Y86 model (contd.)

e The syscall handler reads %eax and calls the
appropriate Y86 system call method.

e Example: (Y86-syscall-open clk x86-32)
— %edi =2 pointer to file path
— %esi 2> flags
— retrieve the actual null-terminated path string
— call the ACL2 interaface (syscall-open)

— set the return value to %eax



WHAT STARTS HERE CHANGES THE WORLD

Integrating with the Y86 model (contd.)

e Other minor changes:
— Changes to the recognizer: y86-prog
— Changes to the byte code writer: y86-asm



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

(defun y86-syscall-open (clk x86-32) (oflags (rgfi *mr-esi* x86-32))
(declare (xargs :stobjs (x86-32) (path (y86-read-string-null-term x86-32 path-
:guard (natp clk))) ptr))
(b* (ret (syscall-open clk path oflags))

((pc (eip x86-32))
;3 Save return code to eax

;; Memory Probe (x86-32 (!rgfi *mr-eax* (car ret) x86-32))
((if (< *2732-2% pc)) (x86-32 (leip (+ pc 1) x86-32)))
(!ms (list :at-location pc x86-32))

:instruction 'syscall-open
:memory-probe nil
:reason 'pc-overflow)

x86-32)) (defun syscall-open (clk pathname flags)
(declare (ignore clk))
(path-ptr (rgfi *mr-edi* x86-32)) (setq ptr
(ccl::make-cstring pathname))
;5 Path-ptr sanity check (setq ret
((if (< *mem-size-in-bytes* path-ptr)) (ccl::external-call "syscall”
('ms (list :at-location pc :unsigned-int 2
:instruction 'syscall-open :address ptr
:reason 'ptr-overflow) :unsigned-int flags
x86-32)) :unsigned-int))

(cons ret nil))



WHAT STARTS HERE CHANGES THE WORLD

Testing the Y86-basic : CAT

* The most basic CAT implementation in
assembly code

— Hardcoded file name in memory
— Open the file
— Read the file, write the bytes read to stdout

— If the number of bytes read was less than the
number of bytes requested, break the loop

— Close the file



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

1 - ;3 Subroutine close and leave
(!! cat-code Subrouti 1 d1
'(cat cat_close_leave

(pushl %ebp) ; Save superior frame pointer (irmovl 3 %eax) ; Set eax =3

(rrmovl %esp %ebp) ; Set frame pointer (rrmovl %ebx %edi) ; file descriptor to edi
(syscall) ; syscall-close

(irmovl 2 %eax) ; Set eax = 2 -> syscall-open

(irmovl #x3000 %edi) ; Set edi = path ptr 55 Subroutine leave

(xorl %esi %esi) ; Set esi = © (O_RDONLY) cat_leave

(syscall) ; call open to open the file (rrmovl %ebp %esp) ; restore stack ptr
(popl %ebp) ; restore base ptr

(rrmovl %eax %ebx) ; store the file descriptor (ret) ; return from subroutine

;; Loop while leof 55 Main

loop (align 16) ; align to 16-byte address

(xorl %eax %eax) ; @ -> eax main ; main program

(rrmovl %ebx %edi) ; file descriptor to edi (irmovl stack %esp) ; initialize stack ptr

(irmovl #x4000 %esi) ; buffer location to esi (rrmovl %esp %ebp) ; initialize base ptr

(irmovl #x64 %edx) ; buffer size = 100 to edx

(syscall) ; actually call read (call cat) ; call the cat function
(halt) ; halt the machine

(rrmovl %eax %edx) ; store readBytes
55 Stack

(irmovl 1 %eax) ; 1 -> eax (pos 8192) 5 position 8192

(irmovl 1 %edi) ; file-descriptor of stdout stack 5 mark this position as 'stack’

(irmovl #x4000 %esi) ; buffer location to esi

(syscall) ; syscall-write ;5 String data
(pos #x3000)

(irmovl #x64 %eax) ; Move 100 to eax (string "//u//soumava//a//ACL2-devel//books//

(subl %edx %eax) ; subtract 100 from readBytes models//y86//y86-basic//y86//syscalls//systemcalls-

’ .1sp"

(je loop) ; loop if zero raw. 1sp™)

(byte @)

)



THE UNIVERSITY OF

TEXAS WHAT STARTS HERE CHANGES THE WORLD

—— AT AUSTIN ——

Demo!



