
Mechanically-Verified Validation
of Satisfiability Solvers

Nathan Wetzler

The University of Texas at Austin

Dissertation Proposal
October 18, 2013

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 272

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion

Outline

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 273

Satisfiability solvers are used in amazing ways...
- Hardware verification: Centaur x86 verification
- Combinatorial problems:
‣ van der Waerden numbers

[Dransfield, Marek, and Truszczynski, 2004]

‣ Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important

Motivation

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 273

Satisfiability solvers are used in amazing ways...
- Hardware verification: Centaur x86 verification
- Combinatorial problems:
‣ van der Waerden numbers

[Dransfield, Marek, and Truszczynski, 2004]

‣ Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important

Motivation

..., but satisfiability solvers have errors.
- Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

- Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

- Implementation errors often imply conceptual errors

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verify SAT solvers
- Requires verification of all crucial search techniques
- Delicate balance between efficiency and ease of verification
- Verification proofs are specific to each solver
- New developments in solving require additional proof effort

4

Solutions

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verify SAT solvers
- Requires verification of all crucial search techniques
- Delicate balance between efficiency and ease of verification
- Verification proofs are specific to each solver
- New developments in solving require additional proof effort

4

Solutions

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verify SAT solvers
- Requires verification of all crucial search techniques
- Delicate balance between efficiency and ease of verification
- Verification proofs are specific to each solver
- New developments in solving require additional proof effort

4

Solutions

Validate SAT solver output
- Emit “proof” of unsatisfiability from SAT solver
- A single proof checker can validate results from many

state-of-the-art solvers
- Proof checker uses limited number of techniques and can be

mechanically verified

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 275

For my dissertation, I will develop a fast
mechanically-verified satisfiability proof checker
using ACL2.

Proposal

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 275

For my dissertation, I will develop a fast
mechanically-verified satisfiability proof checker
using ACL2.

Proposal

This project has three tasks:
1. Design a suitable proof format,
2. Implement an efficient proof checker for the format, and
3. Demonstrate a proof of correctness for the proof checker.

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 276

Proof Properties

Easy to Emit

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 276

Proof Properties

Easy to Emit

Compact

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 276

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verified Checker

6

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verified Checker

6

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Expressive

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verified Checker

6

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
 [Zhang and Malik, 2003]
 [Van Gelder, 2008]
 [Biere, 2008]

with Verified Checker
 [Weber, 2006, and Amjad, 2009] (Isabelle/HOL)
 [Darbari et al., 2010] (Coq)
 [Armand et al., 2011] (Coq)

Clausal (RUP) Proofs
 [Goldberg and Novikov, 2003]
 [Van Gelder, 2008]

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verified Checker

6

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
 [Zhang and Malik, 2003]
 [Van Gelder, 2008]
 [Biere, 2008]

with Verified Checker
 [Weber, 2006, and Amjad, 2009] (Isabelle/HOL)
 [Darbari et al., 2010] (Coq)
 [Armand et al., 2011] (Coq)

Clausal (RUP) Proofs
 [Goldberg and Novikov, 2003]
 [Van Gelder, 2008]

DRUP (DRUP-Trim)
 [Heule, Hunt, Jr., and Wetzler, STVR 201X]
 [Heule, Hunt, Jr., and Wetzler, FMCAD 2013]

RAT Proofs
 [Heule, Hunt, Jr., and Wetzler, CADE 2013]

with Verified Checker
 [Wetzler, Heule, and Hunt, Jr., ITP 2013] (ACL2)

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verified Checker

6

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs
 [Zhang and Malik, 2003]
 [Van Gelder, 2008]
 [Biere, 2008]

with Verified Checker
 [Weber, 2006, and Amjad, 2009] (Isabelle/HOL)
 [Darbari et al., 2010] (Coq)
 [Armand et al., 2011] (Coq)

Clausal (RUP) Proofs
 [Goldberg and Novikov, 2003]
 [Van Gelder, 2008]

DRUP (DRUP-Trim)
 [Heule, Hunt, Jr., and Wetzler, STVR 201X]
 [Heule, Hunt, Jr., and Wetzler, FMCAD 2013]

RAT Proofs
 [Heule, Hunt, Jr., and Wetzler, CADE 2013]

with Verified Checker
 [Wetzler, Heule, and Hunt, Jr., ITP 2013] (ACL2)

Proposed Work

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 277

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion

Outline

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 278

Is there an assignment of
values to variables such that
a given Boolean formula
evaluates to TRUE?

Satisfiability

(x1 ⋁ x2 ⋁ ¬x3) ⋀

(¬x1 ⋁ ¬x2 ⋁ x3) ⋀

(x2 ⋁ x3 ⋁ ¬x4) ⋀

(¬x2 ⋁ ¬x3 ⋁ x4) ⋀

(x1 ⋁ x3 ⋁ x4) ⋀

(¬x1 ⋁ ¬x3 ⋁ ¬x4) ⋀

(x1 ⋁ ¬x2 ⋁ ¬x4) ⋀

(¬x1 ⋁ x2 ⋁ x4)

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 278

Is there an assignment of
values to variables such that
a given Boolean formula
evaluates to TRUE?

Satisfiability

Checking a solution is easy.

Determining unsatisfiability is
more difficult.

(x1 ⋁ x2 ⋁ ¬x3) ⋀

(¬x1 ⋁ ¬x2 ⋁ x3) ⋀

(x2 ⋁ x3 ⋁ ¬x4) ⋀

(¬x2 ⋁ ¬x3 ⋁ x4) ⋀

(x1 ⋁ x3 ⋁ x4) ⋀

(¬x1 ⋁ ¬x3 ⋁ ¬x4) ⋀

(x1 ⋁ ¬x2 ⋁ ¬x4) ⋀

(¬x1 ⋁ x2 ⋁ x4)

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 278

Is there an assignment of
values to variables such that
a given Boolean formula
evaluates to TRUE?

Satisfiability

Checking a solution is easy.

Determining unsatisfiability is
more difficult.

(x1 ⋁ x2 ⋁ ¬x3) ⋀

(¬x1 ⋁ ¬x2 ⋁ x3) ⋀

(x2 ⋁ x3 ⋁ ¬x4) ⋀

(¬x2 ⋁ ¬x3 ⋁ x4) ⋀

(x1 ⋁ x3 ⋁ x4) ⋀

(¬x1 ⋁ ¬x3 ⋁ ¬x4) ⋀

(x1 ⋁ ¬x2 ⋁ ¬x4) ⋀

(¬x1 ⋁ x2 ⋁ x4)Formulas are in conjunctive-
normal form (CNF).

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 278

Is there an assignment of
values to variables such that
a given Boolean formula
evaluates to TRUE?

Satisfiability

Checking a solution is easy.

Determining unsatisfiability is
more difficult.

 1 2 -3 0

-1 -2 3 0

 2 3 -4 0

-2 -3 4 0

 1 3 4 0

-1 -3 -4 0

 1 -2 -4 0

-1 3 4 0Formulas are in conjunctive-
normal form (CNF).

CNF

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 279

Proofs and Refutations
A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

A proof trace is a sequence of clauses that are redundant
with respect to a evolving formula.

9

Proofs and Refutations

Formula Proof

A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

A proof trace is a sequence of clauses that are redundant
with respect to a evolving formula.

9

Proofs and Refutations

Formula Proof

A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

A proof trace is a sequence of clauses that are redundant
with respect to a evolving formula.

9

Proofs and Refutations

Formula Proof

A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

A proof trace is a sequence of clauses that are redundant
with respect to a evolving formula.

9

Proofs and Refutations

Formula Proof

A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

A proof trace is a sequence of clauses that are redundant
with respect to a evolving formula.

9

A refutation is a proof trace that contains the
(unsatisfiable) empty clause, ∅.

Proofs and Refutations

Formula Proof

A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

A proof trace is a sequence of clauses that are redundant
with respect to a evolving formula.

9

A refutation is a proof trace that contains the
(unsatisfiable) empty clause, ∅.

Proofs and Refutations

Formula Proof

∅

A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent, , to F.

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2710

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion

Outline

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2711

Existing proof formats are insufficient.
- Resolution proofs are large and hard to emit
- Clausal (RUP) proofs are inefficient, but are compact and

easy to emit

Task 1: Designing a Proof Format

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2711

Existing proof formats are insufficient.
- Resolution proofs are large and hard to emit
- Clausal (RUP) proofs are inefficient, but are compact and

easy to emit

Task 1: Designing a Proof Format

Use clausal proofs as a foundation with two extensions:
- Add deletion information
- Extend equivalence from logical to satisfiability

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2712

Proofs can be extended with clause deletion information.
- Solvers remove clauses during search
- Remove unnecessary clauses during validation
- Emit learning and deletion information
- New format called DRUP (Deletion RUP)

Extension 1: Deletion Information

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2712

Proofs can be extended with clause deletion information.
- Solvers remove clauses during search
- Remove unnecessary clauses during validation
- Emit learning and deletion information
- New format called DRUP (Deletion RUP)

Extension 1: Deletion Information

-1 2 0
-1 0
 2 0
 0∅

 1 2 -3 0
-1 -2 3 0
 2 3 -4 0
-2 -3 4 0
 1 3 4 0
-1 -3 -4 0
 1 -2 -4 0
-1 2 4 0

 -1 2 0
d -1 2 4 0
 -1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 0
 2 0
d 1 2 -3 0
d 2 3 -4 0
 0∅

CNF RUP DRUP

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2713

Extension 2: Expressiveness

Preserve
Logical

Equivalence

Only Preserve
Satisfiability
Equivalence

Resolution

(D)RUP RAT

CDCL Learning

Subsumption

Blocked Clause Addition

Extended Resolution

Extended Learning

Bounded Variable Addition

Boolean Constraint
Propagation

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2714

The DRUP and RAT proof formats can be combined.
- How will the two formats interact?
- With what frequency are RAT clauses produced?
- Will the addition of RAT clauses lead to more deletions?

DRAT Format

 1 2 -3 0
-1 -2 3 0
 2 3 -4 0
-2 -3 4 0
 1 3 4 0
-1 -3 -4 0
 1 -2 -4 0
-1 2 4 0

 -1 2 0
d -1 2 4 0
 -1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 0
 2 0
d 1 2 -3 0
d 2 3 -4 0
 0∅

 -1 0
d -1 2 4 0
d -1 -2 3 0
d -1 -3 -4 0
 2 0
d 1 2 -3 0
d 2 3 -4 0
 0∅

CNF DRUP DRAT

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2715

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion

Outline

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2716

Efficiency is necessary on industrial-scale problems.
- Validate proofs in a time similar to solving
- Performance without full range of solver techniques

Task 2: Developing an Efficient Checker

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2716

Efficiency is necessary on industrial-scale problems.
- Validate proofs in a time similar to solving
- Performance without full range of solver techniques

Task 2: Developing an Efficient Checker

Several techniques to gain performance.
- Proofs can be trimmed before validated
- Efficient Boolean constraint propagation
- Constant-time, indexed memory access and update

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2717

Proofs often contain clauses that are unnecessary.
Our DRUP-trim tool trims (and checks) proofs.

Proof Trimming

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

 0 20 40 60 80 100 120

Benchmarks (sorted)

Clauses (#)

Input Proof
Output Proof

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2717

Proofs often contain clauses that are unnecessary.
Our DRUP-trim tool trims (and checks) proofs.

Proof Trimming

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

 0 20 40 60 80 100 120

Benchmarks (sorted)

Clauses (#)

Input Proof
Output Proof

Adds optimal
deletion information.

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2718

DRUP-trim is able to closely match solving time.

Fast Proof Checking

10
-1

10
0

10
1

10
2

10
3

 0 20 40 60 80 100 120

Benchmarks (sorted)

Time (s)

Solving (glucose)
Trimming and Checking (DRUP-trim)

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2718

DRUP-trim is able to closely match solving time.

Fast Proof Checking

10
-1

10
0

10
1

10
2

10
3

 0 20 40 60 80 100 120

Benchmarks (sorted)

Time (s)

Solving (glucose)
Trimming and Checking (DRUP-trim)

Used to check
unsatisfiability results
from SAT Competition
2013.

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2719

Clausal proof checkers spend around 95% of their time
performing Boolean Constraint Propagation.

- Core technique in solvers
- Often implemented using a watched-literal data structure

Fast Boolean Constraint Propagation

Watched-Literal Invariant:
All clauses are satisfied or contain at least two
unassigned literals.

This is just one of many implementation techniques that
must be verified.

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2720

Typical ACL2 list-only data structures are not efficient.
- Access and update are linear time operations

Efficiency of ACL2 Code

Instead, one can:
- Mimic array-like structures using STOBJs
- Disassemble key functions to compare compiled code to a

highly optimized version

We have implemented a basic RUP proof checker in
ACL2 that achieves roughly 60% of a similar proof
checker written in C.

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2721

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion

Outline

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2722

Interactive theorem provers assist with verification.
- ACL2 combines a programming language, first-order logic,

and theorem prover
- Proof checker is modeled in ACL2
- Specification for termination and soundness (but not

completeness) are formalized
- Efficient execution by way of Common LISP compilers

Task 3: Proving Correctness

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2722

Interactive theorem provers assist with verification.
- ACL2 combines a programming language, first-order logic,

and theorem prover
- Proof checker is modeled in ACL2
- Specification for termination and soundness (but not

completeness) are formalized
- Efficient execution by way of Common LISP compilers

Task 3: Proving Correctness

Incremental approach to proof process:
- Prove correctness of proof checkers for different formats
- Refine code to resemble C-equivalent

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2723

Verified SAT solvers and proof checkers using ACL2.
- Verified RUP proof checker
- Verified IORUP (deletion information) proof checker
- Verified RAT proof checker

Verified Proof Checkers

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2723

Verified SAT solvers and proof checkers using ACL2.
- Verified RUP proof checker
- Verified IORUP (deletion information) proof checker
- Verified RAT proof checker

Verified Proof Checkers

(defthm main-theorem
 (implies (and (formulap f)
 (refutationp r f))
 (not (exists-solution f))))

; Given formula AND
; refutation
; Then formula is unsatisfiable

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2723

Verified SAT solvers and proof checkers using ACL2.
- Verified RUP proof checker
- Verified IORUP (deletion information) proof checker
- Verified RAT proof checker

Verified Proof Checkers

(defthm main-theorem
 (implies (and (formulap f)
 (refutationp r f))
 (not (exists-solution f))))

; Given formula AND
; refutation
; Then formula is unsatisfiable

Litany of transformations and refinements eventually
resulting in code that corresponds to our C code.

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2724

• Motivation and Proposal
• Satisfiability and Proofs
• Task 1: Designing a Proof Format
• Task 2: Developing an Efficient Checker
• Task 3: Proving Correctness
• Timeline and Conclusion

Outline

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2725

Timeline

October 2013 May 2014

Fast RAT
Checker in ACL2

Verified “Flat” RAT
Checker in ACL2

Connect Fast and
“Flat” RAT Checkers

Design and Testing
of DRAT Format

Fast DRAT
Checker in ACL2

Verified “Flat”
DRAT Checker

Connect Fast and
“Flat” DRAT Checkers

Efficient Proof Checker
Proving Correctness

Proof Format

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2726

Conclusion

Our goal is to increase confidence in all satisfiability
solvers by efficiently checking proofs with a
mechanically-verified proof checker.

This project has three components:
- Design a suitable proof format,
- Implement an efficient proof checker for the format, and
- Demonstrate a proof of correctness for the proof checker.

Verified CheckerEasy to Emit Compact Checked Efficiently Expressive

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Bridging the Gap Between Easy Generation and Efficient Verification of
Unsatisfiability Proofs

Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler
Accepted: Software Testing, Verification, and Reliability (STVR 201X)

Verifying Refutations with Extended Resolution
Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler
Published: Conference on Automated Deduction (CADE 2013)

Mechanical Verification of SAT Refutations with Extended Resolution
Nathan Wetzler, Marijn J.H. Heule, and Warren A. Hunt, Jr.
Published: Interactive Theorem Proving (ITP 2013)

Trimming while Checking Clausal Proofs
Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler
Published: Formal Methods in Computer-Aided Design (FMCAD 2013)

27

Recent Work

Thank you for your attention! Questions?

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2728

Redundancy

• Two formulas F1 and F2 are logically equivalent if they
have the same set of satisfying assignments.

F1 F2≣

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2728

• Two formulas F1 and F2 are satisfiability equivalent if
they are both satisfiable or both unsatisfiable.

Redundancy

F1

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

F2

• Two formulas F1 and F2 are logically equivalent if they
have the same set of satisfying assignments.

F1 F2≣

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2728

• Two formulas F1 and F2 are satisfiability equivalent if
they are both satisfiable or both unsatisfiable.

Redundancy

F1

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

F2

(and F C)

Nathan WetzlerMechanical Verification of SAT Refutations with Extended Resolution / 20##

Scratch

≣SAT

≣
SAT

F

• A clause C is redundant with respect to a formula F if
C conjoined with F is satisfiability equivalent to F.

• Two formulas F1 and F2 are logically equivalent if they
have the same set of satisfying assignments.

F1 F2≣

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

1 2 3 4 5 6 7 8

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

1 2 3 4 5 6 7 8

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

1 2 3 4 5 6 7 8

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

1 2 3 4 5 6 7 8

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

1 2 3 4 5 6 7 8

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2729

Resolution Proof

1 2 3 4 5 6 7 8

∅

9

10

11-1 2
-1
 2

1

2

3

4

5

6

7

8

3 6 8

4 6 2 9

3 5 1 10

4 5 7 10 11

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

10

9

11

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

∅

30

RUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
-1
 2

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

∅

30

RUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
-1
 2

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

∅

30

RUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
-1
 2

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

∅

30

RUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
-1
 2

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

∅

30

RUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1 2
-1
 2

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

 -1 2
d -1 2 4
 -1
d -1 -2 3
d -1 -3 -4
d -1 2
 2
d 1 2 -3
d 2 3 -4

∅
∅

31

DRUP Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

 2 -3
 3 4
-2 -4

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

 2 -3
 3 4
-2 -4

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

 2 -3
 3 4
-2 -4

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

 2 -3
 3 4
-2 -4

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

 2 -3
 3 4
-2 -4

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2732

RAT Proof

 1 2 -3
-1 -2 3
 2 3 -4
-2 -3 4
 1 3 4
-1 -3 -4
 1 -2 -4
-1 2 4

-1
 2

∅

∅

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 2733

Efficient code can be difficult to verify.
- STOBJs provide array-like memory, but require complex

invariants
- Abstract STOBJs simplify these invariants by maintaining an

equivalence
- Currently developing a “cons-less” model that does not use

STOBJs, but organizes data structures in a similar way.
- Refinements
- Litany of transformations eventually resulting in array-like

code

Incremental Approach

Nathan WetzlerMechanically-Verified Validation of Satisfiability Solvers / 27

Verified Checker

34

Proof Properties

Easy to Emit

Compact

Checked Efficiently

Expressive

Resolution Proofs

with Verified Checker

Clausal (RUP) Proofs

DRUP (DRUP-Trim)

RAT Proofs

with Verified Checker

Proposed Work

