
ACL2 Code Proofs

J Strother Moore
Fall, 2013

Lecture 2

1



Today

I will continue to focus on total correctness, but

shift from “constructor-style” to “updater-style”

models and theorems.

We’ll gradually descend to tools that can help in

code proofs.

Next week I’ll conclude with partial correctness and

inductive invariants.

But the techniques being discussed are useful in

both total and partial correctness proofs.

2



An Unremarked Feature of M1

M1 has unbounded arithmetic – IADD is ACL2’s

“+”, etc.

With an arithmetic library included, this makes

simple M1 programs simple to verify.

3



We need a book to support reasoning about

modular arithmetic with the same ease.

My code proofs involving bounded arithmetic

invariably expand the modular operators to expose

floor, mod, 18446744073709551616, and many

case splits.

I wish I could reason more algebraically, canonicalize

arithmetic expressions and still get the benefits of

linear arithmetic.

4



Moving Parts of M1 Proof Engine

• clock functions:

(defun loop-clk (x)

(if (zp x)

3

(clk+ 11 (loop-clk (- x 1)))))

(defun clk (x) (clk+ 2 (loop-clk x)))

• symbolic evaluation:

(m1 s′ 11) = s′′ semi-explicit states

5



• sequential composition:

(m1 s (clk+ i j)) = (m1 (m1 s i) j)

• how they mesh:

– induction drives the machinery

– clocks expand

– sequential composition demarks paths

– symbolic execution runs paths

– induction hypothesis applies

6



• behavior v intention

– behavior (what the code does):

(defun g (x y a)

(if (zp x)

a

(g (- x 1) y (+ a y))))

– intention (what the author wants):

(* x y)

7



• dealing with loops:

specify their effects completely and prove them

first

• separation of concerns:

don’t mix behavior proofs with spec proofs

8



Our Example Program

(defconst *pi*

’((ICONST 0) ; 0

(ISTORE 2) ; 1 a = 0;

(ILOAD 0) ; 2 [loop:]

(IFEQ 10) ; 3 if x=0 then go to end;

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 x = x-1;

(ILOAD 1) ; 8

(ILOAD 2) ; 9

(IADD) ;10

(ISTORE 2) ;11 a = y+a;

(GOTO -10) ;12 go to loop

(ILOAD 2) ;13 [end:]

(HALT))) ;14 ‘‘return’’ a

9



Constructor-Style States

(defun execute-ILOAD (inst s) ; (ILOAD n)

(make-state (+ 1 (pc s))

(locals s)

(push (nth (arg1 inst)

(locals s))

(stack s))

(program s)))

10



Constructor-Style States

(defun execute-ILOAD (inst s) ; (ILOAD n)

(make-state (+ 1 (pc s))

(locals s)

(push (nth (arg1 inst)

(locals s))

(stack s))

(program s)))

But today we are interested in models in which the

state is a single-threaded object modified via

“updates.”

11



Demo

12



Constructor-Style Loop Behavior

((natp x) ∧ (natp y) ∧ (natp a))

→

(m1 (make-state 2 (list x y a) nil *pi*)

(loop-clk x))

=

(make-state

14 ; final HALTed pc

(list 0 y (g x y a)) ; final locals

(push (g x y a) nil) ; final stack

*pi*) ; final program

13



Updater-Style Loop Behavior

((good-statep s) ∧ (pc s) = 2)

→

(m1 s (loop-clk (loi 0 s)))

=

(!pc 14

(!loi 0 0

(!loi 2 (g (loi 0 s) (loi 1 s) (loi 2 s))

(!stack (push (g (loi 0 s) (loi 1 s) (loi 2 s))

(stack s))

s))))

14



Good-Statep

(defun good-statep (s)

(declare (xargs :stobjs (s)))

(and (sp s)

(natp (rd :pc s))

(natp-listp (rd :locals s))

(<= 3 (len (rd :locals s)))

(natp-listp (rd :stack s))

(equal (rd :program s) *pi*)))

15



Updater-Style Loop Behavior

((good-statep s) ∧ (pc s) = 2)

→

(m1 s (loop-clk (loi 0 s)))

=

(!pc 14

(!loi 0 0

(!loi 2 (g (loi 0 s) (loi 1 s) (loi 2 s))

(!stack (push (g (loi 0 s) (loi 1 s) (loi 2 s))

(stack s))

s))))

How do we prove this? How did we do it for the

constructor style?

16



Constructor-Style Loop Induction

((natp x) ∧ (natp y) ∧ (natp a))

→

(m1 (make-state 2 (list x y a) nil *pi*)

(loop-clk x))

=

(make-state

14

(list 0 y (g x y a))

(push (g x y a) nil)

*pi*)

17



Constructor-Style Loop Induction

((natp x) ∧ (natp y) ∧ (natp a))

→

(m1 (make-state 2 (list x y a) nil *pi*)

(loop-clk x))

=

(make-state

14

(list 0 y (g x y a))

(push (g x y a) nil)

*pi*)

(g x y a) suggests induction on x with:

{x ← (- x 1), y ← y, a ← (+ a y)}

18



Constructor-Style Loop Induction Hyp

((natp (- x 1)) ∧ (natp y) ∧ (natp (+ a y)))

→

(m1 (make-state 2 (list (- x 1) y (+ a y)) nil *pi*)

(loop-clk (- x 1)))

=

(make-state

14

(list 0 y (g (- x 1) y (+ a y)))

(push (g (- x 1) y (+ a y)) nil)

*pi*)

(g x y a) suggests induction on x with:

{x ← (- x 1), y ← y, a ← (+ a y)}

19



Constructor-Style Loop Induction Hyp

((natp (- x 1)) ∧ (natp y) ∧ (natp (+ a y)))

→

(m1 (make-state 2 (list (- x 1) y (+ a y)) nil *pi*)

(loop-clk (- x 1)))

=

(make-state

14

(list 0 y (g (- x 1) y (+ a y)))

(push (g (- x 1) y (+ a y)) nil)

*pi*)

This is the perfect call of M1: The completion of

the computation after going around the loop once.

20



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (make-state . . . x y a . . .)

(loop-clk x)))

21



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (make-state . . . x y a . . .)

(loop-clk x)))

22



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (make-state . . . x y a . . .)

(clk+ 11 (loop-clk (- x 1)))))

23



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (make-state . . . x y a . . .)

(clk+ 11 (loop-clk (- x 1)))))

24



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (m1 (make-state . . . x y a . . .) 11)

(loop-clk (- x 1))))

25



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (m1 (make-state . . . x y a . . .) 11)

(loop-clk (- x 1))))

26



Induction Step

(¬(zp x)

∧

(φ (- x 1) y (+ a y)

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1)))))

→

(φ x y a

(m1 (make-state . . . (- x 1) y (+ a y) . . .)

(loop-clk (- x 1))))

27



Updater-Style Loop Behavior
((good-statep s) ∧ (pc s) = 2)

→

(m1 s (loop-clk (loi 0 s)))

=

(!pc 14

(!loi 0 0

(!loi 2 (g (loi 0 s) (loi 1 s) (loi 2 s))

(!stack (push (g (loi 0 s) (loi 1 s) (loi 2 s))

(stack s))

s))))

Induct with s ← (m1 s 11)

28



Updater-Style Loop Behavior
((good-statep s) ∧ (pc s) = 2)

→

(m1 s (loop-clk (loi 0 s)))

=

(!pc 14

(!loi 0 0

(!loi 2 (g (loi 0 s) (loi 1 s) (loi 2 s))

(!stack (push (g (loi 0 s) (loi 1 s) (loi 2 s))

(stack s))

s))))

Induct with s ← (m1 s 11) and make sure you can

prove (good-statep s) implies

(good-statep (m1 s 11)).

29



Demo

30



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2))

(equal

(m1 s

(loop-clk (loi 0 s)))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Target in Next Proof:

(M1 (WR :PC 2

(WR :LOCALS (UPDATE-NTH 2 0 (RD :LOCALS S))

S))
(LOOP-CLK (NTH 0 (RD :LOCALS S))))

31



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2))

(equal

(m1 s

(loop-clk (loi 0 s)))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Target in Next Proof:

(M1 (WR :PC 2

(WR :LOCALS (UPDATE-NTH 2 0 (RD :LOCALS S))

S))
(LOOP-CLK (NTH 0 (RD :LOCALS S))))

32



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2))

(equal

(m1 s

(loop-clk (nth 0 (rd :locals s))))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Target in Next Proof:

(M1 (WR :PC 2

(WR :LOCALS (UPDATE-NTH 2 0 (RD :LOCALS S))

S))
(LOOP-CLK (NTH 0 (RD :LOCALS S))))

33



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2))

(equal

(m1 s

(loop-clk (nth 0 (rd :locals s))))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Target in Next Proof:

(M1 (WR :PC 2

(WR :LOCALS (UPDATE-NTH 2 0 (RD :LOCALS S))

S))
(LOOP-CLK (NTH 0 (RD :LOCALS S))))

34



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2))

(equal

(m1 s

(loop-clk (loi 0 s)))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Target in Next Proof:

(M1 (WR :PC 2

(WR :LOCALS (UPDATE-NTH 2 0 (RD :LOCALS S))

S))
(LOOP-CLK (NTH 0 (RD :LOCALS S))))

35



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2)

(equal x (loi 0 s)))

(equal

(m1 s

(loop-clk x))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Target in Next Proof:

(M1 (WR :PC 2

(WR :LOCALS (UPDATE-NTH 2 0 (RD :LOCALS S))

S))
(LOOP-CLK (NTH 0 (RD :LOCALS S))))

36



Why Loop Lemma is Unused
(defthm loop-correct

(implies (and (good-statep s)

(equal (rd :pc s) 2)

(equal x (loi 0 s)))

(equal

(m1 s

(loop-clk x))
(!pc 14 (!loi 0 0 . . .)))) . . .)

Unfortunately, this lemma can’t be proved by

induction on s alone: you must induct on s and x.

Or you can prove the original version and then store

this version as its :rewrite :corollary.

37



Demo

38



Inefficient Induction

(defun hint (s)

(if (and (good-statep s)

(equal (pc s) 2))

(if (zp (loi 0 s))

s

(let ((s (m1 s 11)))

(hint s)))

s))

Is an “inefficient” induction hint if s occurs many

times in φ.

39



Updater-Style Loop Behavior
((good-statep s) ∧ (pc s) = 2)

→

(m1 s (loop-clk (loi 0 s)))

=

(!pc 14

(!loi 0 0

(!loi 2 (g (loi 0 s) (loi 1 s) (loi 2 s))

(!stack (push (g (loi 0 s)

(loi 1 s)

(loi 2 s))

(stack s))

s))))

Induct with s ← (m1 s 11)

40



Updater-Style Loop Behavior
((good-statep s′) ∧ (pc s′) = 2)

→

(m1 s′ (loop-clk (loi 0 s′)))

=

(!pc 14

(!loi 0 0

(!loi 2 (g (loi 0 s′) (loi 1 s′) (loi 2 s′))

(!stack (push (g (loi 0 s′)

(loi 1 s′)

(loi 2 s′))

(stack s′))

s′))))

Induct with s ← s′ where s′ = simp[(m1 s 11)]

41



Demo

42



New M1 Induction Principle

(defun iclk (s)

(if (pre s)

(if (test s)

(κ s)

(clk+ (η s) (iclk (m1 s (η s)))))

0))

(defthm irule

(implies (pre s)

(post (m1 s (iclk s)))))

43



Constraints

(natp (κ s))

(natp (η s))

(implies (pre s)

(o-p (m s)))

(implies (and (pre s)

(not (test s)))

(o< (m (m1 s (η s)))

(m s)))

44



(implies (and (pre s)

(not (test s)))

(pre (m1 s (η s))))

(implies (and (pre s)

(test s))

(post (m1 s (κ s))))

45



Demo

46



Further Improvements

For best results with special-purpose induction

principles:

• define the notion of a syntactically well-formed

program that will recognize many of the programs

you wish to verify

• pre-prove that well-formed programs do not

modify themselves, e.g., (program (m1 s n)) is

(program s) when that program is

“well-formed”

47



• pre-prove that “good-statep” is invariant under

the execution of “well-formed” programs, e.g., so

(good-statep (m1 s 11)) doesn’t have to be

proved each time

• that “(m1 s 11)” is equal to its semi-explicit

value so it doesn’t have to be computed each time

48



General Advice on Inductive Code
Proofs

I believe that developing special-purpose induction

principles – and convenient macros for invoking

them – for oft-used code idioms is worthwhile

49



General Advice on Inductive Code
Proofs

I believe that developing special-purpose induction

principles – and convenient macros for invoking

them – for oft-used code idioms is worthwhile –

after you’ve gained enough experience with your

machine to know what idioms to support and which

principles work best!

50



Aside

I will now briefly demonstrate some tools that I

have developed.

Not all are ready for prime time:

• some are fragile

• to make them behave as demonstrated you must

prove the ‘right’ lemmas

• they are not documented

They will not be released as part of this talk.

51



Snorkeling

a simple trick to avoid stack overflows in long

symbolic evaluation runs

(m1 s 880) = (step (step . . . (step s) . . . ))
︸ ︷︷ ︸

880

(m1 s 880)

=

(m1 s (clk+ 400 400 80)) =

=

(m1 (m1 (m1 s 400) 400) 80)

52



Demo

53



Lift-Subterm-from-Clause

an ACL2 book that allows you to completely

simplify a subterm of a goal before working on the

rest of the goal, e.g., as we might want to to with

(m1 s 11) in the induction hypothesis

Demo

54



Terminatricks

an ACL2 book that guesses measures to justify

recursive definitions

Demo

55



Simplify-under-hyps

an ACL2 book that simplifies a term under a

hypothesis and returns an equal term, e.g., to

simplify (m1 s 11) under (good-statep s) and

(equal (pc s) 2).

Demo

56



Codewalker

an ACL2 book that derives clock and semantic

functions from code, given only the operational

semantics of the machine

Demo

57



Projector

an ACL2 book (part of Codewalker) that ‘projects’

out the effects of some code on a given machine

resource, often helpful in figuring out what a piece

of code does

Demo

58



Next Week

Inductive Invariants and Partial Correctness

59


