
ACL2 Code Proofs

J Strother Moore
Fall, 2013

Lecture 3

1



Today

partial correctness

partial correctness and clocks

Dave Greve’s wormhole abstraction

inductive invariant style proofs

2



State Based Partial Correctness

((pre s)

∧

(haltedp (m1 s k)))

→

(post s (m1 s k))

3



Demo

Clock-functions can be used to prove such

theorems.

In this demo, we’ll prove a non-termination result,

which is a special case of partial correctness:

((pre s)

∧

(haltedp (m1 s k)))

→

(post s (m1 s k))

4



Demo

Clock-functions can be used to prove such

theorems.

In this demo, we’ll prove a non-termination result,

which is a special case of partial correctness:

((pre s)

∧

(haltedp (m1 s k)))

→

(post s (m1 s k))

5



Demo

Clock-functions can be used to prove such

theorems.

In this demo, we’ll prove a non-termination result,

which is a special case of partial correctness:

((pre s)

∧

¬(post s (m1 s k)))

→

¬(haltedp (m1 s k))

6



Demo

Clock-functions can be used to prove such

theorems.

In this demo, we’ll prove a non-termination result,

which is a special case of partial correctness:

((pre s)

∧

¬(post s (m1 s k)))

→

¬(haltedp (m1 s k))

7



Demo

Clock-functions can be used to prove such

theorems.

In this demo, we’ll prove a non-termination result,

which is a special case of partial correctness:

(pre s)

→

¬(haltedp (m1 s k))

8



Conventional Mechanized Code Proofs

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

9



Conventional Mechanized Code Proofs

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

10



Conventional Mechanized Code Proofs

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

VC3. R (s) ∧ ¬t → Q (h(s)).

11



Conventional Mechanized Code Proofs

Code is annotated with assertions.

A special-purpose tool is used to generate

verification conditions (VCs)

This tool, called a verification condition generator

(VCG), contains the language semantics, e.g.,

encoded as Hoare-triples.

Most practical VCGs do a lot of simplification as

they build VCs.

A theorem prover is used to prove the VCs.

12



RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

13



We assume the program in s, π, does not change

during execution.

We assume there is exactly one HALT, at γ.

Let s0 be the initial state of program π.

pc (s0) = α

Let sk denote m1 (s0, k).

Partial Correctness:

P (s0) ∧ haltedp (sk) → Q(sk).

14



We assume the program in s, π, does not change

during execution.

We assume there is exactly one HALT, at γ.

Let s0 be the initial state of program π.

pc (s0) = α

Let sk denote m1 (s0, k).

Partial Correctness:

P (s0) ∧ haltedp (sk) → Q(sk).

15



We assume the program in s, π, does not change

during execution.

We assume there is exactly one HALT, at γ.

Let s0 be the initial state of program π.

pc (s0) = α

Let sk denote m1 (s0, k).

Partial Correctness:

P (s0) ∧ pc (sk) = γ → Q(sk).

16



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

(Actually, we assert “prog (s) = π” at α, β and γ,

but we omit that here by our convention that the

program is always π.)

17



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Objection: Is this definition consistent? Yes: Every

tail-recursive definition is witnessed by a total

function [Manolios and Moore, 2000]. See ACL2

Community Books misc/defpun and misc/defp.

18



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Assume we’ve proved

Inv (s) → Inv (step (s)).

(We’ll see the proof in a moment.)

19



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (s0) → Inv (sk) (By induction)

20



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (s0) → Inv (sk)

pc (s0) = α (By def of s0)

21



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv(s0) ≡



















P (s0) if pc (s0) = α

R (s0) if pc (s0) = β

Q (s0) if pc (s0) = γ

Inv (step (s0)) otherwise

Inv (s0) → Inv (sk)

pc (s0) = α (By def of s0)

22



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

P (s0) → Inv (sk)

23



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

P (s0) → Inv (sk)

P (s0) (Given)

24



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (sk)

25



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (sk)

pc (sk) = γ (Given)

26



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (sk) ≡



















P (sk) if pc (sk) = α

R (sk) if pc (sk) = β

Q (sk) if pc (sk) = γ

Inv (step (sk)) otherwise

Inv (sk)

pc (sk) = γ (Given)

27



Theorem: P (s0) ∧ pc (sk) = γ → Q (sk)

Proof: Define

Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Q (sk)

Q.E.D.

28



So it’s trivial to prove the theorem

P (s0) ∧ pc (sk) = γ → Q (sk)

if we can prove

Inv (s) → Inv (step (s)).

29



Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

30



Inv (s) → Inv (step (s))

Proof.

Expanding Inv (s) generates four cases:

Case pc (s) = α:

Case pc (s) = β:

Case pc (s) = γ:

Case otherwise:

31



Inv (s) ≡



















P (s) if pc (s) = α

R (s) if pc (s) = β

Q (s) if pc (s) = γ

Inv (step (s)) otherwise

Inv (s) = Inv (step (s)) = Inv (step (step (s))) . . .

as long as the pc /∈ {α, β, γ}.

32



Inv (s) → Inv (step (s)) [Case pc(s) = α]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

33



P (s) → Inv (step (s)) [Case pc(s) = α]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

34



P (s) → R (f (s)) [Case pc(s) = α]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

35



Inv (s) → Inv (step (s)) [Case pc(s) = β]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

36



(R (s) ∧ t → R (g (s))) [Case pc(s) = β]

(R (s) ∧ ¬t → Q (h(s)))

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

37



Inv (s) → Inv (step (s)) [Case pc(s) = γ]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

38



Inv (s) → Inv (s) [Case pc(s) = γ]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

39



Inv (s) → Inv (step (s)) [Case otherwise]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

40



Inv (step (s)) → Inv (step (s)) [Case otherwise]

RETURN

program 

pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

π

41



Recap: Given the definition of Inv , the “natural”

proof of

Inv (s) → Inv (step (s))

generates the standard verification conditions

VC1. P (s) → R (f (s)),

VC2. R (s) ∧ t → R (g (s)), and

VC3. R (s) ∧ ¬t → Q (h(s))

as subgoals from the operational semantics!

It generates no other non-trivial proof obligations.

The VCs are simplified as they are generated.

42



Demo

43



Discussion

We did not write a VCG for M1.

The VCs were generated directly from the

operational semantics by the theorem prover.

Since VCs are generated by proof, the paths

explored and the VCs generated are sensitive to the

pre-condition specified.

The VCs are simplified (and possibly proved) by the

same process.

44



We did not count instructions or define a clock

function.

We did not constrain the inputs so that the

program terminated.

Indeed, we can deal with non-terminating programs.

45



Demo

46



Total Correctness via Inductive
Assertions

We have also handled total correctness via the VCG

approach.

An ordinal measure is provided at each cut point

and the VCs establish that it decreases upon each

arrival at the cut point.

Clock functions can be automatically generated and

admitted from such proofs.

See Sandip Ray’s proofstyles/ books in the

Community Books.

47



Inductive Assertion Tools

See the following Community Books:

symbolic/generic/defsimulate.lisp

workshops/2011/krug-et-al/support/Symbolic/

defsimulate+.lisp

See also paper

http://www.cs.utexas.edu/users/sandip/

publications/symbolic/main.html

which describes the defsimulate book.

48



Citations

P. Manolios and J Moore, “Partial Functions in

ACL2,” JAR 2003.

J Moore, “Inductive Assertions and Operational

Semantics,” CHARME 2003, D. Geist (Ed.),

Springer Verlag LNCS 2860, pp. 289–303, 2003.

J Moore, S. Ray, W. Hunt, and J. Matthews, “A

Mechanical Analysis of Program Verification

Strategies,” Journal of Automated Reasoning,

40(4), pp. 245–269, May 2008.

49



Additional Material

J Moore, “Proving Theorems about Java and the

JVM with ACL2”, Models, Algebras and Logic of

Engineering Software, M. Broy and M. Pizka (eds),

IOS Press, Amsterdam, pp 227-290, 2003.

http://www.cs.utexas.edu/users/moore/

publications/marktoberdorf-02/main.pdf

and also ACL2 Community Books models/jvm/m5/

for examples of subroutine call/return, heap

manipulation, and multi-threading.

50



Subroutine Call Tips

• define (poised-to-invoke-name s)

• if using clocks, define (clk-name s) to count

instructions from call through return

• specify correctness to include restoration of

(relevant) registers and stack, preservation of the

program segment, and advancement of pc to the

next instruction

51



• use (whatever-it-is-. . . s . . .) wormhole

abstraction to specify “don’t care” values for

those parts of the state that you will never care

about

• specify correct answer

52



Multi-Threading Tip

Try to reduce it to sequential correctness in a

slightly chaotic environment

J Moore, “A Mechanically Checked Proof of a

Multiprocessor Result via a Uniprocessor View,”

Formal Methods in System Design, 14(2), March,

1999, pp. 213-228.

http://www.cs.utexas.edu/users/moore/

publications/multi-v-uni.pdf

53


