
Weak Memory Models: A Tutorial

Jade Alglave

University College London

February 3rd, 2014

Sequential Consistency

A comfortable model for concurrent programming would be
Sequential Consistency (SC), as defined by Leslie Lamport in 1979:

The result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order specified
by its program.

Jade Alglave WMM Tutorial February 3rd, 2014 2 / 33

Example

Consider the following example, where initially x = y = 0:

sb

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1

(c)(d)(a)(b) r1 = 1 ∧ r2 = 0

(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave WMM Tutorial February 3rd, 2014 3 / 33

Example

Consider the following example, where initially x = y = 0:

sb

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=?; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1

(c)(d)(a)(b) r1 = 1 ∧ r2 = 0

(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave WMM Tutorial February 3rd, 2014 3 / 33

Example

Consider the following example, where initially x = y = 0:

sb

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1

(c)(d)(a)(b) r1 = 1 ∧ r2 = 0

(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave WMM Tutorial February 3rd, 2014 3 / 33

Example

Consider the following example, where initially x = y = 0:

sb

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=?;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1

(c)(d)(a)(b) r1 = 1 ∧ r2 = 0

(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave WMM Tutorial February 3rd, 2014 3 / 33

Example

Consider the following example, where initially x = y = 0:

sb

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

r1=0; r2=1;

Following SC, we expect three possible outcomes:

(a)(b)(c)(d) r1 = 0 ∧ r2 = 1

(c)(d)(a)(b) r1 = 1 ∧ r2 = 0

(a)(c)(b)(d)
(a)(c)(d)(b) r1 = 1 ∧ r2 = 1
(c)(a)(b)(d)
(c)(a)(d)(b)

Jade Alglave WMM Tutorial February 3rd, 2014 3 / 33

Experiment

On an Intel Core 2 Duo:

{x=0; y=0;}

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

Certain instructions appear to be reordered w.r.t. the program
order.
Let us check that on my machine.

Jade Alglave WMM Tutorial February 3rd, 2014 4 / 33

Weak memory models

For performance reasons, modern architectures provide several
features that are weakenings of SC:

For some applications, achieving sequential consistency
may not be worth the price of slowing down the
processors. In this case, one must be aware that
conventional methods for designing multiprocess
algorithms cannot be relied upon to produce correctly
executing programs.

Jade Alglave WMM Tutorial February 3rd, 2014 5 / 33

How can we make sure that we write correct programs?

◮ We need to understand precisely what memory models
guarantee to write correct concurrent programs.

◮ This problem spreads to high level languages and is potentially
much worse, due to compiler optimisations.

Jade Alglave WMM Tutorial February 3rd, 2014 6 / 33

Surely there are specs?

Documentation is (at least) ambiguous, since written in natural
language.

Jade Alglave WMM Tutorial February 3rd, 2014 7 / 33

Surely there are specs?

“all that horrible horribly incomprehensible and
confusing [. . .] text that no-one can parse or reason with
— not even the people who wrote it”

Anonymous Processor Architect, 2011

Jade Alglave WMM Tutorial February 3rd, 2014 7 / 33

Describing executions

Jade Alglave WMM Tutorial February 3rd, 2014 8 / 33

Style of modelling

Memory models roughly fall into two classes:

◮ Operational

◮ Axiomatic

Jade Alglave WMM Tutorial February 3rd, 2014 9 / 33

Building an execution

rlns

P0 P1

(a) x← 2 (b) x← 1

(c) r1← x

Allowed: 1:r1=1; x=2;

Jade Alglave WMM Tutorial February 3rd, 2014 10 / 33

Building an execution : Events E and program order po

rlns

P0 P1

(a) x← 2 (b) x← 1

(c) r1← x

Allowed: 1:r1=1; x=2;

a:W[x]=2 b:W[x]=1

c:R[x]=1

po

We write E , (E, po) for such a structure.

Jade Alglave WMM Tutorial February 3rd, 2014 10 / 33

Building an execution : Coherence co

rlns

P0 P1

(a) x← 2 (b) x← 1

(c) r1← x

Allowed: 1:r1=1; x=2;

a:W[x]=2 b:W[x]=1
co

c:R[x]=1

po

The coherence co orders totally all the write events to the same
memory location.

Jade Alglave WMM Tutorial February 3rd, 2014 10 / 33

Building an execution : Read-from rf

rlns

P0 P1

(a) x← 2 (b) x← 1

(c) r1← x

Allowed: 1:r1=1; x=2;

a:W[x]=2 b:W[x]=1
co

c:R[x]=1

porf

The read-from map rf links a write and any read that reads from
it.

Jade Alglave WMM Tutorial February 3rd, 2014 10 / 33

Building an execution : From-read map fr

rlns

P0 P1

(a) x← 2 (b) x← 1

(c) r1← x

Allowed: 1:r1=1; x=2;

a:W[x]=2

c:R[x]=1
fr

b:W[x]=1
co

porf

We derive the from-read map fr from co and rf.

Jade Alglave WMM Tutorial February 3rd, 2014 10 / 33

Building an execution : Execution witness X , (co, rf)

rlns

P0 P1

(a) x← 2 (b) x← 1

(c) r1← x

Allowed: 1:r1=1; x=2;

a:W[x]=2

c:R[x]=1
fr

b:W[x]=1
co

porf

We define an execution witness as X , (co, rf).

Jade Alglave WMM Tutorial February 3rd, 2014 10 / 33

Describing architectures

Jade Alglave WMM Tutorial February 3rd, 2014 11 / 33

Four axioms

◮ Uniproc

◮ No thin air

◮ Causality

◮ Propagation

Jade Alglave WMM Tutorial February 3rd, 2014 12 / 33

Uniproc (Coherence)

All the models I have studied preserve SC per location.

a: W[x]=1

b: W[x]=2

poco

Jade Alglave WMM Tutorial February 3rd, 2014 13 / 33

Uniproc (Coherence)

All the models I have studied preserve SC per location.

a: R[x]=1

b: W[x]=1

porf

Jade Alglave WMM Tutorial February 3rd, 2014 13 / 33

Uniproc (Coherence)

All the models I have studied preserve SC per location.

a:W[x]=1 b:R[x]=1
rf

c:W[x]=2

po
co

Jade Alglave WMM Tutorial February 3rd, 2014 13 / 33

Uniproc (Coherence)

All the models I have studied preserve SC per location.

a:W[x]=1 b:W[x]=2
co

c:R[x]=1
rf

pofr

Jade Alglave WMM Tutorial February 3rd, 2014 13 / 33

Uniproc (Coherence)

All the models I have studied preserve SC per location.

a:W[x]=1 b:R[x]=1
rf

c:R[x]=0

po
fr

Jade Alglave WMM Tutorial February 3rd, 2014 13 / 33

Uniproc (Coherence)

All the models I have studied preserve SC per location.

This ensures that non-relational analyses are sound on weak
memory.

Jade Alglave WMM Tutorial February 3rd, 2014 13 / 33

No thin air

All the models I have studied define a happens-before relation:

a: Rf[0]=0

b: Wf[1]=1

po

c: Rf[1]=1
rf

d: Wf[0]=0

po
rf

Jade Alglave WMM Tutorial February 3rd, 2014 14 / 33

No thin air

All the models I have studied define a happens-before relation:

a: Rf[0]=0

b: Wf[1]=1

po

c: Rf[1]=1
rf

d: Wf[0]=0

po
rf

which should be acyclic

Jade Alglave WMM Tutorial February 3rd, 2014 14 / 33

Causality (mp)

This happens-before relation determines which message passing
idioms work as intended:

a: Wf[1]=1

b: Wl[1]=1

po

c: Rl[1]=1
rf

d: Rf[1]=0

po
fr

Jade Alglave WMM Tutorial February 3rd, 2014 15 / 33

Causality (wrc)

This happens-before relation determines which write-to-read
causality idioms work as intended:

a: Wx=1 b: Rx=1
rf

c: Wy=1
po

d: Ry=1

rfe: Rx=0
fr po

Jade Alglave WMM Tutorial February 3rd, 2014 16 / 33

Propagation (2+2w)

Fences constrain the order in which writes to different locations
propagate:

a: Wx=1

b: Wy=2
po

d: Wx=2
co

c: Wy=1
co

po

Jade Alglave WMM Tutorial February 3rd, 2014 17 / 33

Propagation (w+rw+2w)

Fences constrain the order in which writes to different locations
propagate:

a: Wx=2 b: Rx=2
rf

c: Wy=1
po

d: Wy=2

coe: Wx=1
co po

Jade Alglave WMM Tutorial February 3rd, 2014 18 / 33

A real-world excerpt

Jade Alglave WMM Tutorial February 3rd, 2014 19 / 33

PostgreSQL developers’ discussions

Jade Alglave WMM Tutorial February 3rd, 2014 20 / 33

Synchronisation in PostgreSQL

1 void worker(int i)
2 { while(! latch [i]);
3 for (;;)
4 { assert (! latch [i] || flag [i]);
5 latch [i] = 0;
6 if (flag [i])
7 { flag [i] = 0;
8 flag [(i+1)%WORKERS] = 1;
9 latch [(i+1)%WORKERS] = 1;

10 }
11 while(! latch [i]);
12 }
13 }

Each element of the array
latch is a shared boolean
variable dedicated to
interprocess communication.

A process waits to have its
latch set then should have
work to do, namely passing
around a token via the array
flag (line 8).

Once the process is done, it
sets the latch of the process
the token was passed to
(line 9).

Jade Alglave WMM Tutorial February 3rd, 2014 21 / 33

Synchronisation in PostgreSQL

1 void worker(int i)
2 { while(! latch [i]);
3 for (;;)
4 { assert (! latch [i] || flag [i]);
5 latch [i] = 0;
6 if (flag [i])
7 { flag [i] = 0;
8 flag [(i+1)%WORKERS] = 1;
9 latch [(i+1)%WORKERS] = 1;

10 }
11 while(! latch [i]);
12 }
13 }

Starvation seemingly cannot
occur: when a process is
woken up, it has work to do.

Yet, the developers observed
that the wait in line 11
would time out,
i.e. starvation of the ring of
processes.

The processor can delay the
write in line 8 until after the
latch had been set in line 9.

Jade Alglave WMM Tutorial February 3rd, 2014 21 / 33

Message passing idiom in PostgreSQL

This corresponds to the message passing idiom

pgsql (mp)

Worker 0 Worker 1

(8) f[1]=1; (2) while(!l[1]);

(9) l[1]=1; (6) if(f[1])

Observed: l[1]=1; f[1]=0

a: Wf[1]=1

b: Wl[1]=1

po

c: Rl[1]=1
rf

d: Rf[1]=0

po
fr

Jade Alglave WMM Tutorial February 3rd, 2014 22 / 33

Message passing idiom in PostgreSQL

This corresponds to the message passing idiom

which requires synchronisation to behave as on SC

pgsql (mp)

Worker 0 Worker 1

(8) f[1]=1; (2) while(!l[1]);
lwsync dependency

(9) l[1]=1; (6) if(f[1])

Forbidden: l[1]=1; f[1]=0

a: Wf[1]=1

b: Wl[1]=1

po

c: Rl[1]=1
rf

d: Rf[1]=0

po
fr

Jade Alglave WMM Tutorial February 3rd, 2014 22 / 33

Verification

Jade Alglave WMM Tutorial February 3rd, 2014 23 / 33

Porte ouverte à deux battants

We propose two ways of verifying concurrent software running on
weak memory:

◮ we instrument the program to embed the weak memory
semantics inside it, then feed the transformed program to an
SC verification tool;

◮ we explicitly build partial order models representing the
possible executions of the program on weak memory.

Jade Alglave WMM Tutorial February 3rd, 2014 24 / 33

Independent Reads of Independent Writes

iriw

P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

Jade Alglave WMM Tutorial February 3rd, 2014 25 / 33

iriw on SC

iriw

P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

Jade Alglave WMM Tutorial February 3rd, 2014 26 / 33

iriw on Power

iriw

P0 P1 P2 P3

(a) r1← x (c) r3← y (e) x← 1 (f) y← 2

(b) r2← y (d) r4← x

r1=1; r2=0; r3=2; r4=0;

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

Jade Alglave WMM Tutorial February 3rd, 2014 27 / 33

Validity of an execution

◮ An execution is valid on an architecture if it does not show
certain cycles.

◮ So we assign a clock to each event

◮ Then see if we can order these clocks w .r .t. less-than over N

Jade Alglave WMM Tutorial February 3rd, 2014 28 / 33

On iriw

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

(po P0) cab (po P1) ccd
(rf x) sea ∧ si0d (rf y) sfc ∧ si1b
(ws x) ci0e (ws y) ci1f

(fr x) (si0d ∧ ci0e)⇒ cde (fr y) (si1b ∧ ci1f)⇒ cbf
(grf x) (sea ⇒ cea) (grf y) (sfc ⇒ cfc)

(1)

Jade Alglave WMM Tutorial February 3rd, 2014 29 / 33

iriw on SC

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

(po P0) cab (po P1) ccd
(rf x) sea ∧ si0d (rf y) sfc ∧ si1b
(ws x) ci0e (ws y) ci1f

(fr x) (si0d ∧ ci0e)⇒ cde (fr y) (si1b ∧ ci1f)⇒ cbf
(grf x) (sea ⇒ cea) (grf y) (sfc ⇒ cfc)

(2)

Jade Alglave WMM Tutorial February 3rd, 2014 30 / 33

iriw on Power

(a) Rx1

(b) Ry0

(c) Ry1

(d) Rx0

(e)Wx1 (f)Wy1

po po

rf

fr

rf

fr

(po P0) cab (po P1) ccd
(rf x) sea ∧ si0d (rf y) sfc ∧ si1b
(ws x) ci0e (ws y) ci1f

(fr x) (si0d ∧ ci0e)⇒ cde (fr y) (si1b ∧ ci1f)⇒ cbf
(grf x) (sea ⇒ cea) (grf y) (sfc ⇒ cfc)

(3)

Jade Alglave WMM Tutorial February 3rd, 2014 31 / 33

Tools

Testing hardware, simulating models:
http://diy.inria.fr

Verifying software:
www.cprover.org/wmm

Jade Alglave WMM Tutorial February 3rd, 2014 32 / 33

http://diy.inria.fr
www.cprover.org/wmm

Thanks!

Jade Alglave WMM Tutorial February 3rd, 2014 33 / 33

