
Soumava Ghosh
The University of Texas at Austin

�
� Overview of programs that perform I/O

� Linking, loading and the x86 model

� Modifying programs to perform I/O on the x86 model

� Interpreting and loading binaries on the x86 model

� Demo

Agenda

�
� Most user mode programs are interactive.

� Simplest interactive programs perform console or file
input/output (I/O).

� Generally achieved in C by invoking the functions
printf, scanf, gets, puts, fread, fwrite etc.

� These are library functions provided by LibC – the C
standard library.

Programs performing I/O

�
Tracing I/O functions

� Let’s say the user’s code called the printf() function
from main(). Here is what happens internally:

� The above sequence of method calls ultimately
culminates in the execution of the ‘write’ kernel
routine.

�
� The C standard library provides a higher level of

abstraction to the user than the system calls exposed
by the OS.

� Ease of use:
� writing/reading variable values at runtime
�  buffered I/O via LibC buffers results in better

performance.

� Platform and architecture independent interface

Why do we need LibC?

�
� Programs compiled using GCC by default link with

the C Standard library.

� Linking could be:
� dynamic: system loader loads the libraries at desired

addresses in the process’ address space at runtime.
�  static: binary is built such that it contains the library

code – self sufficient binary, but has a larger size
depending on the libraries it links against. (-static flag)

� X86 model requires static binaries only. Loading
libraries at runtime is not supported at present.

Building the binary

�
� Upon static linking with LibC, an increase of ~900KB is

generally observed.

�  Simple I/O operations require too many machine
instructions, would probably take hours to execute on the
x86 model.

� Use of segmented registers in LibC machine code – not
yet supported in the x86 model.

�  Static compilation with LibC is not the way to go.

� Q: How to execute programs that perform I/O on the x86
model without using LibC?

LibC linked binaries and the x86 model

�
�  For example, as shown earlier, printf invokes the write

system call to display output – the user’s program could
do the same directly without using printf.

� How to execute the write system call?
�  Cannot be called directly – it is a kernel mode routine.
�  User mode code requires to indicate to the OS that a change

in privilege level is required.
�  Means to achieve this:

�  INT 80H: the historical assembly instruction to interrupt
and invoke a system call.

�  SYSCALL/SYSRET or SYSENTER/SYSEXIT: Modern fast
system call assembly instructions.

Removing the LibC dependency

�
� The only parts of the program that need to be rewritten

are the ones which invoke the LibC I/O functions.

� Printf/Scanf format strings: Need to be implemented. If
not generic, something specific to the program is good
too.

� The hard part: writing assembly code to invoke the
appropriate system routines.

� LibC generates code for the _start() entry point for every
executable. In the absence of LibC, a _start needs to be
provided to execute the program on a real machine.

Re-writing the program

�
System call signature:
size_written	
 =	
 write(file_desc,	
 buffer,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 num_bytes_to_write);	

	

Inline Assembly equivalent:
asm	
 volatile	

(

	
 	
 "mov	
 $1,	
 %%rax\n\t”	
 	
 	
 	
 	
 //	
 System	
 call	
 number	
 (__NR_write	
 =	
 1,	
 unistd.h)	

	
 	
 "mov	
 $1,	
 %%rdi\n\t"	
 	
 	
 	
 	
 //	
 First	
 parameter	
 in	
 RDI	
 (stdout	
 =	
 1)	

	
 	
 "mov	
 %1,	
 %%rsi\n\t"	
 	
 	
 	
 	
 //	
 Second	
 parameter	
 in	
 RSI	
 (buffer)	

	
 	
 "mov	
 %2,	
 %%rdx\n\t"	
 	
 	
 	
 	
 //	
 Third	
 parameter	
 in	
 RDX	
 (num_bytes_to_write)	

	
 	
 "syscall”	

	
 	
 	
 	
 :	
 "=a"(size_written)	
 	
 //	
 Output	
 (=)	
 to	
 be	
 stored	
 in	
 size_written	

	
 	
 	
 	
 :	
 "g"(buffer),	
 "g"(num_bytes_to_write)	

	
 	
 	
 	
 :	
 "%rdi",	
 "%rsi",	
 "%rdx",	
 "%rcx",	
 "%r11”	

);	

Inline assembly for system calls

�
� Easy to write _start if there are no command line

arguments to the program.

	
 	
 	
 void	
 _start()	
 {	

	
 	
 	
 	
 	
 	
 main();	

	
 	
 	
 	
 	
 	
 asm	
 (

	
 	
 	
 	
 	
 	
 	
 	
 "mov	
 $60,	
 %rax;”	
 	
 	
 	
 	
 	
 	
 	
 //	
 The	
 ‘exit’	
 system	
 call	

	
 	
 	
 	
 	
 	
 	
 	
 "xor	
 %rdi,	
 %rdi;”	
 	
 	
 	
 	
 	
 	
 //	
 The	
 parameter	
 (status)	
 set	
 to	
 0	

	
 	
 	
 	
 	
 	
 	
 	
 "syscall");	

	
 	
 	
 }	

	

� If command line arguments are present, some stack
pointer math is required to pop them from the
correct location.

	

The _start function

�
� Replace printf with code constructing the string

followed by assembly code calling the write system
call.

� Replace scanf with assembly code calling the read
system call followed by code parsing the input.

� Add the _start entry point to the program.

� Compile with the ‘-nostdlib’ flag to prevent linking
with LibC.

Putting it all together

�
� The SDLF (Simple Dumb Loader Format) reader has

been recently developed for the Darwin and Linux
platforms.

� These loaders interpret the binary as per the
standard formats (mach-o for Darwin and ELF for
Linux) and write the bytes to the appropriate
memory locations in the x86 stobj.

� We still require to consult with ObjDump (a tool that
produces the machine code dump of an object file) to
decide the halt address for the x86 model.

Loading the binary on the x86 model

�
� Path to books:
	
 	
 	
 x86/x86-­‐byte-­‐mem/tools/model-­‐validation/cosim/sdlf/elf	

	
 	
 	
 x86/x86-­‐byte-­‐mem/tools/model-­‐validation/cosim/sdlf/mach-­‐o	

� Binary interpretation functions:
(X86ISA::file-­‐read	
 <file_name>	
 |sdlf|	
 |state|)	

(X86ISA::elf-­‐file-­‐read	
 <file_name>	
 |elf|	
 |state|)	

� Section loading functions:
(X86ISA::load-­‐text-­‐section	
 |{sdlf,	
 elf}|	
 |x86|)	

(x86ISA::load-­‐data-­‐section	
 |{sdlf,	
 elf}|	
 |x86|)	

(x86ISA::load-­‐rodata-­‐section	
 |elf|	
 |x86|)	

	

SDLF Usage

�
Demo

� Modification of the Micro SAT solver to execute
on the x86 model.

� Reads a file test.cnf (of a particular format) and
writes ‘Satisfiable’ or ‘Not Satisfiable’ to the
command line as an end result of the execution.

� LibC functions replaced: fopen, fclose, printf,
scanf.

