Executing user mode
programs that perform I/O
on the x86 model

3

Soumava Ghosh
The University of Texas at Austin

Agenda

& Overview of programs that perform I/O

R Linking, loading and the x86 model

R Moditying programs to perform I/O on the x86 model
R Interpreting and loading binaries on the x86 model

R Demo

Programs performing I/O

R Most user mode programs are interactive.

R Simplest interactive programs perform console or file
input/output (I/0O).

R Generally achieved in C by invoking the functions
printf, scanf, gets, puts, fread, fwrite etc.

R These are library functions provided by LibC - the C
standard library.

Tracing I/O functions

R Let’s say the user’s code called the printf() function
from main(). Here is what happens internally:

main(): printf("The string to print: %d\n", some_int),
printf(const char* format, ...): vfprintf (stdout, format, arg);

vfprintf(FILE* s, const char* format, va_list arg): puts(s);

puts(const char* s): new_do_write();

new_do_write(): write(fp, buf, len);

write(int fp, const void* buf, size_t len): —-asm__("syscall"); (Linux/arch/x86/kernel/entry_64.5)

sys_write() handler called as *sys_call_table[%rax]();

R The above sequence of method calls ultimately
culminates in the execution of the ‘write” kernel
routine.

Why do we need LibC?

R The C standard library provides a higher level of
abstraction to the user than the system calls exposed
by the OS.

R Ease of use:

3 writing/reading variable values at runtime

o3 buffered I/0O via LibC buffers results in better
performance.

R Platform and architecture independent interface

Building the binary

R Programs compiled using GCC by default link with
the C Standard library.

R Linking could be:

3 dynamic: system loader loads the libraries at desired
addresses in the process” address space at runtime.

3 static: binary is built such that it contains the library
code - self sufficient binary, but has a larger size
depending on the libraries it links against. (-static flag)

R X86 model requires static binaries only. Loading
libraries at runtime is not supported at present.

LibC linked binaries and the x86 model

&R Upon static linking with LibC, an increase of ~900KB is
generally observed.

R Simple I/ O operations require too many machine

instructions, would probably take hours to execute on the
x86 model.

R Use of segmented registers in LibC machine code - not
yet supported in the x86 model.

R Static compilation with LibC is not the way to go.

® Q: How to execute programs that perform I/O on the x86
model without using LibC?

Removing the LibC dependency

R For example, as shown earlier, printf invokes the write
system call to display output - the user’s program could
do the same directly without using printf.

R How to execute the write system call?
3 Cannot be called directly - it is a kernel mode routine.
3 User mode code requires to indicate to the OS that a change
in privilege level is required.
3 Means to achieve this:

R INT 80H: the historical assembly instruction to interrupt
and invoke a system call.

&R SYSCALL/SYSRET or SYSENTER /SYSEXIT: Modern fast
system call assembly instructions.

Re-writing the program

&R The only parts of the program that need to be rewritten
are the ones which invoke the LibC I/O functions.

R Printf/Scanf format strings: Need to be implemented. If
not generic, something specific to the program is good
too.

R The hard part: writing assembly code to invoke the
appropriate system routines.

R LibC generates code for the _start() entry point for every
executable. In the absence of LibC, a _start needs to be
provided to execute the program on a real machine.

Inline assembly for system calls

System call signature:

size written = write(file _desc, buffer,
num_bytes to write);

Inline Assembly equivalent:
asm volatile

(
"mov $1, Z%%rax\n\t” // System call number (__NR write = 1, unistd.h)
SleyE Sl i = = EirsEeharanetereths RGeS EAo S =-i>)
"mov %1, %%rsi\n\t" // Second parameter in RSI (buffer)
"mov %2, %%rdx\n\t" // Third parameter in RDX (num _bytes to write)
"syscall”

"=g"(size written) // Output (=) to be stored in size written
"g"(buffer), "g"(num bytes to write)
P A T = PSS T R X R CX e i R L2

s

The start function

R Easy to write _start if there are no command line
arguments to the program.

Vol dStart)=

main();

asm (
"mov $60, Zrax;” // The ‘exit’ system call
"xor X%rdi, %rdi;” // The parameter (status) set to @
K v i ey

}

R If command line arguments are present, some stack
pointer math is required to pop them from the
correct location.

Putting it all together

R Replace printf with code constructing the string
followed by assembly code calling the write system
call.

R Replace scanf with assembly code calling the read
system call followed by code parsing the input.

R Add the _start entry point to the program.

R Compile with the “-nostdlib’ flag to prevent linking
with LibC.

Loading the binary on the x86 model

R The SDLF (Simple Dumb Loader Format) reader has
been recently developed for the Darwin and Linux
platforms.

R These loaders interpret the binary as per the
standard formats (mach-o for Darwin and ELF for
Linux) and write the bytes to the appropriate
memory locations in the x86 stobj.

R We still require to consult with ObjDump (a tool that

produces the machine code dump of an object file) to
decide the halt address for the x86 model.

SDLF Usage

R Path to books:
x86/x86-byte-mem/tools/model -validation/cosim/sdlf/elf
x86/x86-byte-mem/tools/model -validation/cosim/sdlf/mach-o

R Binary interpretation functions:
(X86ISA: :file-read <file name> [sdlf| [state])
(X86ISA: :elf-file-read <file name> [elf| [state])

R Section loading functions:
(X86ISA: :Load-text-section [{sdlf, elf}| [x86])
(X86ISA: :load-data-section [{sdlf, elf}| [x86/)
(x86ISA: :load-rodata-section [elf| [x86])

Demo

«RModification of the Micro SAT solver to execute
on the x86 model.

RReads a file test.cnf (of a particular format) and
writes ‘Satisfiable” or ‘Not Satisfiable” to the
command line as an end result of the execution.

RLibC functions replaced: fopen, fclose, printf,
scanf.

