Proving Unbounded Theorems
with the Help of GL

Cuong Chau
Matt Kaufmann

Agenda

* Atechnique for proving unbounded theorems with
the help of GL.

* Benefit of using that technique in certifying the 32-
bit physical memory model.

Agenda

* Atechnique for proving unbounded theorems with
the help of GL.

Approach

* GLis a symbolic simulation framework for proving
bounded ACL2 theorems. It cannot prove theorems
that contain unbounded variables.

Approach

* GLis a symbolic simulation framework for proving
bounded ACL2 theorems. It cannot prove theorems
that contain unbounded variables.

* Proving unbounded theorems might not trivial if they
are complicated. However, if they can be
transformed into bounded theorems, then we can
use GL to solve the problem.

Approach

* GLis a symbolic simulation framework for proving
bounded ACL2 theorems. It cannot prove theorems
that contain unbounded variables.

* Proving unbounded theorems might not trivial if they
are complicated. However, if they can be
transformed into bounded theorems, then we can
use GL to solve the problem.

* Present a trick that proves unbounded theorems
with the help of GL.

Simple Example

* (1mplies (integerp x)
(equal (mod x 8)
(logand x 7))))

Although x is unbounded, only its 3 low bits affect the computation in
the above theorem. So, we can transform it to the bounded lemma:

* (1mplies (integerp x)
(equal (mod x[3:0] 8)
(logand x[3:0] 7))))

where x][j:i] represents the bit string from index i to j of x (0 <=i <=).

Simple Example

* (1mplies (integerp x)
(equal (mod x 8)
(logand x 7))))

Although x is unbounded, only its 3 low bits affect the computation in
the above theorem. So, we can transform it to the bounded lemma:

* (1mplies (integerp x)
(equal (mod x[3:0] 8)
(logand x[3:0] 7))))

Then, the unbounded theorem will follow by applying two following
rewrite rules:

* (equal (mod x[3:0] 8) (mod x 8))
* (equal (logand x[3:0] 7) (logand x 7))

Main Theorem

(defthm main
(implies (and (natp 102)
(<=102 2))
(equal (logior (mod (ash mem-val (* -8 102))
DAG)
(% *¥QAQ*
(mod (ash mem-val (+ -8 (* -8 102)))
*27°8%)))
(mod (ash mem-val (* -8 102))
*2016%))))

Main Theorem

(defthm main
(implies (and (natp 102)
(<=102 2))
(equal (logior EO

(* *2/\8*
(mod (ash mem-val (+ -8 (* -8 102)))
(mod (ash mem-val (* -8 102))
*2716%))))

10

Main Theorem

(defthm main
(implies (and (natp 102)
(<=102 2))
(equal (logior EO

(* *2/\8*
El))

(mod (ash mem-val (* -8 102))
*2716%))))

11

Main Theorem

(defthm main
(implies (and (natp 102)
(<=102 2))
(equal (logior EO

(* *2/\8*
El))

E2)))

12

Analyze EO

* EO = (mod (ash mem-val (* -8 102))

2/\8)
= mem-val[(+ 7 (* 8 i02)) : (* 8 102)]

+ (and (<=0i02) => (and (<=0 (* 8 i02))

(<=102 2)) (<= (* 8 i02) 16)
(<=7 (+ 7 (* 8i02)))
(<= (+ 7 (* 8 i02)) 23))

13

Analyze EO
* EO = (mod (ash mem-val (* -8 102))
2/\8)
= mem-val[(+ 7 (* 8102)) : (* 8102)]

* (and (<=0102) => (and (<=0 (* 8102))
(<=102 2))

(<= (+ 7 (* 8 i02)) 23))

=> Only mem-val[23 : 0] of mem-val affects EO.

14

Analyze E1

* E1 = (mod (ash mem-val (+ -8 (* -8 i02)))

2/\8)
= mem-val[(+ 15 (* 8102)) : (+ 8 (* 8 102))]

15

Analyze E1

* E1 = (mod (ash mem-val (+ -8 (* -8 i02)))
2A8)
= mem-val[(+ 15 (* 8102)) : (+ 8 (* 8i02))]

 (and (<=0102) => (and (<=8 (+8 (*8102)))
(<=102 2)) (<=(+8(*8102)) 24)
(<=15(+15(* 8102)))
(<=(+15(*8102)) 31))

=> Only mem-val[31 : 8] of mem-val affects E1.

16

Analyze E2

* E2 = (mod (ash mem-val (* -8 102))

¥ 6%)
= mem-val[(+ 15 (* 8102)) : (* 8 02)]

17

Analyze E2

* E2 = (mod (ash mem-val (* -8 102))
¥ 6%)
= mem-val[(+ 15 (* 8102)) : (* 8102)]

* (and (<=0102) => (and (<=0 (* 8102))
(<=102 2)) (<=(*8102) 16)
(<=15(+15(* 8102)))
(<=(+15(*8102)) 31))

=> Only mem-val[31 : 0] of mem-val affects E2.

18

* Only mem-val[23:
* Only mem-val[31 :

* Only mem-val[31 :

= Only mem-val[31

Claim

0] of mem-val affects EO.
8] of mem-val affects E1.

0] of mem-val affects E2.

: 0] of mem-val affects EO, E1, and E2.

19

Claim

* Only mem-val[23 : 0] of mem-val affects EO.
* Only mem-val[31 : 8] of mem-val affects EI.

* Only mem-val[31 : 0] of mem-val affects E2.
= Only mem-val[31 : 0] of mem-val affects EO, E1, and E2.

e mem-val[31 : O]
= (mod mem-val *2/32%)
= (logand mem-val *2732-1%)

20

Claim

* Only mem-val[23 : 0] of mem-val affects EO.
* Only mem-val[31 : 8] of mem-val affects EI.

* Only mem-val[31 : 0] of mem-val affects E2.
= Only mem-val[31 : 0] of mem-val affects EO, E1, and E2.

= The main theorem can be transformed into the bounded lemma
by replacing mem-val by mem-val[31 : 0] in the main
theorem.

21

Bounded Main-2 Lemma

(defthm main-2

(let ((mem-val (mod mem-val *2732%)))
(implies (and (natp 102)
(<102 3))

(equal (logior (mod (ash mem-val (* -8 102))
A8)
(* #DN8*
(mod (ash mem-val (+ -8 (* -8 102)))
*27°8%)))
(mod (ash mem-val (* -8 102))
*2716%)))))

22

Bounded Main-1 Lemma

(def-gl-thm main-1

:hyp (and (natp 102)

(<102 3)

(n32p mem-val))
:concl (equal (logior (mod (ash mem-val (* -8 102))

QAB)
(% *¥QAQ*
(mod (ash mem-val (+ -8 (* -8 102)))
*278%)))
(mod (ash mem-val (* -8 102))
*2716%))
:g-bindings
"((mem-val (:g-number ,(gl-int 0 2 33)))
(102 (:g-number ,(gl-int 1 2 3)))))

23

Bounded Main-2 Lemma

(defthm main-2

(let ((mem-val (mod mem-val *2732%)))
(implies (and (natp 102)
(<102 3))

(equal (logior (mod (ash mem-val (* -8 102))
A8)
(* #DN8*
(mod (ash mem-val (+ -8 (* -8 102)))
*27°8%)))
(mod (ash mem-val (* -8 102))
*2716%)))))

24

Rewrite Rules

* (mod (ash (mod mem-val *2732%) (* -8 102))
2/\8)

= (mod (ash mem-val (* -8102))
2/\8)

= E0

25

Rewrite Rules

* (mod (ash (mod mem-val *2732%) (* -8 102))

2/\8)

= (mod (ash mem-val (* -8102))
2/\8)

=E0

* (mod (ash (mod mem-val *2732%) (+ -8 (* -8 102)))
2/\8)

=El

26

Rewrite Rules

* (mod (ash (mod mem-val *2732%) (* -8 102))

)A8)

= (mod (ash mem-val (* -8102))
A8)

= E0

* (mod (ash (mod mem-val *2732%) (+ -8 (* -8 102)))
*DAB¥)

=FEl

* (mod (ash (mod mem-val *2732%) (* -8 102))
*DN16%)

=E2

27

Main Theorem

(defthm main
30 ZAN x
(implies (and (natp 102)
(<102 3))
(equal (logior (mod (ash mem-val (* -8 102))
)AB)
(* *¥2AQ*
(mod (ash mem-val (+ -8 (* -8 102)))
*27°8%)))
(mod (ash mem-val (* -8 102))
*2716%)))
:hints ((““Goal” :use (main-2))))

28

Agenda

* Benefit of using that technique in certifying the 32-
bit physical memory model.

29

Benefit

 The main theorem will help to prove 16-bit read-over-write
theorems in the 32-bit physical memory model without
requiring the (x86p x86) hypothesis.

(defthm |rm-low-16 over wm-low-16 at diff-addrs & non-overlap|
(implies (and (or (< (1+ addrl) addr2)
(< (1+ addr2) addrl))
(nl6p val)
(e36p-36)

...
(equal (rm-low-16 addr2 (wm-low-16 addrl val x86))

(rm-low-16 addr2 x86))))

30

16-Bit Read-Over-Write

(defthm [rm-low-16 over wm-low-16 at diff-addrs & non-overlap|
(implies (and (or (< (1+ addrl) addr2)
(< (1+ addr2) addrl))
(nl16p val)

(x86px86)

)
(equal (rm-low-16 addr2 (wm-low-16 addrl val x86))

(rm-low-16 addr2 x86))))

* (rm-low-<i>addr2 x86) performs reading an <i>-bit value from
addr2 in x86 memory field.

e (wm-low-<j>addrl val x86) performs writing a <j>-bit value val into
x86 memory field at addrl.

31

Supporting Lemma

(defthm rm-low-16-as-rm-low-08
(implies (and (natp addr)
(< (+ 1 addr) *mem-size-in-bytes*))
(equal (rm-low-16 addr x86)
(let* ((byteO (rm-low-08 addr x86))
(bytel (rm-low-08 (+ 1 addr) x86)))
(logior (ash bytel 8)
byte0))))

32

Key Checkpoint

(implies (and (natp addr)
(< addr 4503599627370495)
(<= (mod addr 4) 2)
(integerp (memi (ash addr -2) x86)))
(equal (mod (ash (memi (ash addr -2) x86)
(* -8 (mod addr 4)))
65536)
(logior (mod (ash (memi (ash addr -2) x86)
(* -8 (mod addr 4)))
256)
(* 256
(mod (ash (memi (ash addr -2) x86)
(+ -8 (* -8 (mod addr 4))))

256)))))

33

Problem

* The key checkpoint is the main theorem we discussed earlier,
where i02 is replaced with (mod addr 4), and mem-val is replaced
with (memi (ash addr -2) x86).

e Although (memi (ash addr -2) x86) returns a 32-bit value, proving
(n32p (memi (ash addr -2) x86)) requires (x86p x86) hypothesis by
the following lemma:

defthm memi-is-n32
(p
(implies (and (x86p x86)
(natp 1)
(<1 *mem-size-in-dwords*))
(n32p (memi 1 x86))))

34

Problem with (x86p x86)

* The present of (x86p x86) hypothesis in read-over-
write and write-over-write theorems causes

significant slowdown when proving lemmas
containing read-over-long-nested-writes as well as
write-over-long-nested-writes into memory.

=>The main theorem is a solution for avoiding
(x86p x86) hypothesis in read-over-write theorems.

35

Problem with (x86p x86)

* The present of (x86p x86) hypothesis in read-over-
write and write-over-write theorems causes
significant slowdown when proving lemmas
containing read-over-long-nested-writes as well as
write-over-long-nested-writes into memory.

=>The main theorem is a solution for avoiding
(x86p x86) hypothesis in read-over-write theorems.

e How about write-over-write theorems?

36

Supporting Lemma

(defthm wm-low-16-as-wm-low-08-lemma-1
(implies (and (n02p 102) (<102 3) (nl16p val) a32p-mem-—val))
(equal (logior (* (mod (ash val -8) 256)
(expt 2 (+ 8 (* 8102))))
(logand (lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
(* (mod val 256) (expt 256 102)))
(logand (lognot (* 255 (expt 256 102)))
(lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
mem-val))
(logior (* val (expt 256 102))
(logand (lognot (* 65535 (expt 256 102)))

mem-val))))

Problem

We cannot transform wm-low-16-as-wm-low-08-lemma- 1
into a bounded lemma because the following condition is not
satisfied:

— Only fixed finite bits of unbounded variables affect the
computation.

38

Supporting Lemma

(defthm wm-low-16-as-wm-low-08-lemma-1
(implies (and (n02p 102) (<102 3) (nl16p val) a32p-mem-—val))
(equal (logior (* (mod (ash val -8) 256)
(expt 2 (+ 8 (* 8102))))
(logand (lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
(* (mod val 256) (expt 256 102)))
(logand (lognot (* 255 (expt 256 102)))
(lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
mem-val))
(logior (* val (expt 256 102))
(logand (lognot (* 65535 (expt 256 102)))

mem-val))))

Strategy

(defthm wm-low-16-as-wm-low-08-lemma-1
(implies (and (n02p 102) (<102 3) (nl16p val) a32p-mem-—val))
(equal (logior (* (mod (ash val -8) 256)
(expt 2 (+ 8 (* 8102))))
(logand (lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
(* (mod val 256) (expt 256 102)))
(logand (lognot (* 255 (expt 256 102)))
(lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
mem-val))
(logior (* val (expt 256 102))
(logand (lognot (* 65535 (expt 256 102)))

mem-val))))

Strategy

(defthm wm-low-16-as-wm-low-08-lemma-1
(implies (and (n02p 102) (<102 3) (nl16p val) a32p-mem-—val))
(equal (logior (* (mod (ash val -8) 256)
(expt 2 (+ 8 (* 8102))))
(logand (lognot (* 255 (expt 2 (+ 8 (* 8 102)))))
(* (mod val 256) (expt 256 102)))
(logand (lognot (* 255 (expt 256 102)))
(lognot (* 255 (expt 2 (+ 8 (* 8102)))))
mem-val))
(logior (* val (expt 256 102))
(logand (lognot (* 65535 (expt 256 102)))

mem-val))))

Timing Results

The experiments below were performed on “eld”
using /projects/acl2/svn-recent/ccl-saved _acl2hp

Certification time 8-bit 32-bit 32-bit
(x86p x86)
Lemma loop-effects 29.90s 32.83s 498.17s
Lemma prime-effects 20.80s 22.84s 475.02s
Whole model 32:32.29s 34:35.85s | 43:42.12s

Lemma loop-effects and prime-effects contain 8-bit
read-over-80-nested-writes.

42

Questions!

