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Orthogonality Relations of Trigonometric Functions

Theorem 1 (Orthogonality relations of trigonometric functions)∫ L
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Defun-std

Syntax is like defun:
(defun-std f (x1 ... xn)

<body>) ;; note that <body> does not need
;; to be classical!

Proof obligation for the above defun-std form:

(implies (and (standardp x1) ... (standardp xn))

(standardp <body>))

Axiom added for the above defun-std form:

(implies (and (standardp x1) ... (standardp xn))

(equal (f x1 ... xn)

<body>))
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Defthm-std

The transfer principle is implemented in ACL2(r) with defthm-std.
(defthm-std name <body>) ;; optionally, :hints etc.

Apply if the <body> is classical. Before attempting the proof,
ACL2(r) adds a hypothesis of (standardp x) for all variables x in
the <body>:

(implies (and (standardp x1) ... (standardp xk))

<body>)

Also apply to prove that a classical function returns standard values
with standard inputs. Formally, if f is classical, then

(defthm-std name

(implies (and (standardp x1) ... (standardp xk))

(standardp (f x1 ... xk))))
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FTC-2 Proof Procedure

FTC-2: If f ′ is a real-valued continuous function on [a, b] and f is an
antiderivative of f ′ on [a, b], then∫ b

a
f ′(x)dx = f (b)− f (a)

Prove that f ′ returns real values on [a, b].

Prove that f ′ is continuous on [a, b].

Specify the real-valued antiderivative f of f ′ and prove that f ′ is the
derivative of f on [a, b].

Formalize the integral of f ′ on [a, b].

Evaluate the integral of f ′ on [a, b] in terms of f by applying the
FTC-2.
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Riemann Integral

The Riemann integral of a function f ′ on an interval [a, b] is the limit (if
exists) of the Riemann sum of f ′ when partitioning [a, b] into extremely
small subintervals.

In non-standard analysis, the Riemann integral can be defined as the
standard part of the Riemann sum (if limited) when partitioning [a, b] into
infinitesimal subintervals.

(defund-std strict-int-f-prime (a b)

(if (and (inside-interval-p a (f-prime-domain))

(inside-interval-p b (f-prime-domain))

(< a b))

(standard-part

(riemann-f-prime (make-small-partition a b)))

0))

Proof obligation: the Riemann sum is limited on [a, b].
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Riemann Integral

(defthm limited-riemann-f-prime-small-partition

(implies (and (standardp a)

(standardp b)

(inside-interval-p a (f-prime-domain))

(inside-interval-p b (f-prime-domain))

(< a b))

(i-limited

(riemann-f-prime (make-small-partition a b)))))

The limited property of Riemann sums was proved in ACL2 community
books for generic real-valued continuous unary functions
[M. Kaufmann, 2000].

Unfortunately, we are not allowed to functionally instantiate the lemma
above for functions containing more than one variable (i.e., functions
containing free variables) since the theorem we try to instantiate is
non-classical and the functions we try to instantiate are classical
[R. Gamboa & J. Cowles, 2007].
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Functional Instantiation Issue

Example: Given an arbitrary classical function f (x), it follows that

standardp(x)⇒ standardp(f (x))

If we are allowed to substitute λ(x).(x + y) into the formula above, we
would conclude that

standardp(x)⇒ standardp(x + y)

But this is false since the free variable y can be non-standard.
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Limited Property of Riemann Sums

Theorem 2 (Limited property of Riemann sums)

If there exists finite values m and M such that

m ≤ f (t) ≤ M, for all t ∈ [a, b]

Then the Riemann sum of f over [a, b] with any partition P is bounded by

m(b − a) ≤
n∑

i=1

f (ti )(xi − xi−1) ≤ M(b − a)

where ti ∈ [xi−1, xi ] ∧ x0 = a ∧ xn = b.
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Limited Property of Riemann Sums

Proof. From the hypothesis m ≤ f (t) ≤ M for all t ∈ [a, b], it follows that

n∑
i=1

m(xi − xi−1) ≤
n∑

i=1

f (ti )(xi − xi−1) ≤
n∑

i=1

M(xi − xi−1)

where ti ∈ [xi−1, xi ] ∧ x0 = a ∧ xn = b.

⇒ m
n∑

i=1

(xi − xi−1) ≤
n∑

i=1

f (ti )(xi − xi−1) ≤ M
n∑

i=1

(xi − xi−1)

⇒ m(b − a) ≤
n∑

i=1

f (ti )(xi − xi−1) ≤ M(b − a)

�
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Problem

Given a specific real-valued continuous function f , it is usually easy to
specify the bounds of f on a closed and bounded interval.

The problem becomes more challenging when applying to generic
real-valued continuous functions since it is impossible to find either their
minimum or maximum. However, the boundedness of these functions on a
closed and bounded interval still holds by the extreme value theorem.
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Extreme Value Theorem

Theorem 3 (Extreme value theorem)

Given any real-valued continuous function f defined on a closed and
bounded interval [a, b], there always exist numbers c and d in [a, b] s.t.

f (c) ≤ f (x) ≤ f (d),∀x ∈ [a, b]

The extreme value theorem was proved in ACL2 community books for
unary functions only [J. Cowles & R. Gamboa, 2014]. We need to extend
this theorem for functions with free variables.
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Functional Instantiation with Free Variables

Add only one extra variable representing free variables to the constrained
function and ignore this extra variable in the function definition.

(encapsulate

((rcfn-2 (x arg) t)

(rcfn-2-domain () t))

(local (defun rcfn-2 (x arg)

(declare (ignore arg))

(realfix x)))

(local (defun rcfn-2-domain () (interval nil nil)))

... ;; Non-local theorems about rcfn-2 and rcfn-2-domain

)

⇒ The proofs for the constrained function with main variables only are
still applied for the new constrained function with the extra variable added.
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Functional Instantiation with Free Variables

Non-classical theorems proved for the new constrained function can be
applied for functions containing arbitrary number of free variables through
functional instantiations with pseudo-lambda expressions.

The trick is to view the extra variable in the constrained function as a list
of free variables ⇒ no free variable appears in the functional instantiation.

Demo.
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FTC-2 Proof Procedure

FTC-2: If f ′ is a real-valued continuous function on [a, b] and f is an
antiderivative of f ′ on [a, b], then∫ b

a
f ′(x)dx = f (b)− f (a)

Prove that f ′ returns real values on [a, b].

Prove that f ′ is continuous on [a, b].

Specify the real-valued antiderivative f of f ′ and prove that f ′ is the
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Evaluate the integral of f ′ on [a, b] in terms of f by applying the
FTC-2.
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FTC-2

FTC-2: If f ′ is a real-valued continuous function on [a, b] and f is an
antiderivative of f ′ on [a, b], then∫ b

a
f ′(x)dx = f (b)− f (a)

(defthm ftc-2

(implies (and (inside-interval-p a (rcdfn-domain))

(inside-interval-p b (rcdfn-domain)))

(equal (int-rcdfn-prime a b)

(- (rcdfn b) (rcdfn a)))))

When functionally instantiating classical theorems, free variables are
allowed to appear in pseudo-lambda expressions as long as classicalness is
preserved [R. Gamboa & J. Cowles, 2007] ⇒ use the “encapsulate trick”
with zero-arity functions representing free variables.
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Encapsulate Trick

Step 1: Define an encapsulate event that introduces zero-arity classical
functions representing free variables.

Step 2: Prove that the zero-arity functions return standard values (use
defthm-std).

Step 3: Prove the main theorem but replacing the free variables with
corresponding zero-arity functions introduced in step 1. Without free
variables, the functional instantiation can be applied straightforwardly.

Step 4: Prove the main theorem by functionally instantiating the zero-arity
functions in the lemma proved in step 3 with free variables.
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Fourier Coefficients

Theorem 4 (Fourier coefficients)

Let

f (x) = a0 +
N∑

n=1

(an cos(n
π

L
x) + bn sin(n

π

L
x))

Then

a0 =
1

2L

∫ L

−L
f (x)dx ,

an =
1

L

∫ L

−L
f (x) cos(n

π

L
x)dx ,

bn =
1

L

∫ L

−L
f (x) sin(n

π

L
x)dx
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Sum Rule for Definite Integral of Indexed Sums

Lemma 5 (Sum rule for definite integral of indexed sums)

Let {fn} be a set of real-valued continuous functions on [a, b], where
n = 0, 1, 2, ...,N. Then∫ b

a

N∑
n=0

fn(x)dx =
N∑

n=0

∫ b

a
fn(x)dx
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Sum Rule for Definite Integral of Indexed Sums

Proof. Let Fn be an antiderivative of fn on [a, b], where n = 0, 1, 2, ...,N.
Then

∑N
n=0 Fn(x) is an antiderivative of

∑N
n=0 fn(x) for all x ∈ [a, b] by

the sum rule for differentiation. By FTC-2, we have∫ b

a

N∑
n=0

fn(x)dx =
N∑

n=0

Fn(b)−
N∑

n=0

Fn(a)

=
N∑

n=0

(Fn(b)− Fn(a))

=
N∑

n=0

∫ b

a
fn(x)dx

�
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Fourier Coefficients

Proof. For 0 < m ≤ N,

1

L

∫ L

−L
f (x) cos(m

π

L
x)dx

=
1

L

∫ L

−L
(a0 cos(m

π

L
x)

+
N∑

n=1

(an cos(n
π

L
x) cos(m

π

L
x) + bn sin(n

π

L
x) cos(m

π

L
x)))dx

=
1

L
(

∫ L

−L
a0cos(0

π

L
x) cos(m

π

L
x)dx

+
N∑

n=1

(

∫ L

−L
an cos(n

π

L
x) cos(m

π

L
x)dx +

∫ L

−L
bn sin(n

π

L
x) cos(m

π

L
x)dx))

=am
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Fourier Coefficients

Similarly, we have

1

L

∫ L

−L
f (x) sin(m

π

L
x)dx = bm,

1

2L

∫ L

−L
f (x)dx = a0

�
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Uniquesness of Fourier Sums

Corollary 6 (Uniquesness of Fourier sums)

Let

f (x) = a0 +
N∑

n=1

(an cos(n
π

L
x) + bn sin(n

π

L
x))

and

g(x) = A0 +
N∑

n=1

(An cos(n
π

L
x) + Bn sin(n

π

L
x))

Then f = g ⇔


a0 = A0

an = An, for all n = 1, 2, ...,N

bn = Bn, for all n = 1, 2, ...,N
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Uniquesness of Fourier Sums

Proof.
(⇒) Follow immediately from the Fourier coefficient formula.

a0 =
1

2L

∫ L

−L
f (x)dx =

1

2L

∫ L

−L
g(x)dx = A0

an =
1

L

∫ L

−L
f (x) cos(n

π

L
x)dx =

1

L

∫ L

−L
g(x) cos(n

π

L
x)dx = An

bn =
1

L

∫ L

−L
f (x) sin(n

π

L
x)dx =

1

L

∫ L

−L
g(x) sin(n

π

L
x)dx = Bn

(⇐) Obviously true by induction on n.

�
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Inner Product Formula

Theorem 7 (Inner product formula)

Let

f (x) = a0 +
M∑
n=1

(an cos(n
π

L
x) + bn sin(n

π

L
x))

and

g(x) = A0 +
N∑

n=1

(An cos(n
π

L
x) + Bn sin(n

π

L
x))

Then

1

L

∫ L

−L
f (x)g(x)dx = 2a0A0 +

min{M,N}∑
n=1

anAn +

min{M,N}∑
n=1

bnBn
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Infinite Series

An infinite series is defined as the limit of the sequence of partial sums if
the limit exists,

∞∑
n=0

an = lim
N→∞

N∑
n=0

an

In non-standard analysis, it is defined as the standard part (st) of a partial
sum with an infinitely large index H0 if the sum is limited,

∞∑
n=0

an = st(

H0∑
n=0

an)

where the natural number H0 is i-large.
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Definite Integral of an Infinite Series

Let’s consider the following equality∫ b

a
st(

H0∑
n=0

fn(x))dx
?
= st(

H0∑
n=0

∫ b

a
fn(x)dx)

We can’t claim it is true in general. However, we can prove that it is true
under some conditions.
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Pointwise Convergence vs. Uniform Convergence

Pointwise convergence: Suppose {fn} is a sequence of functions sharing
the same domain and codomain. The sequence {fn} converges pointwise
to f means that fH(x) ≈ f (x) for all standard x in the domain of fn and
for all infinitely large natural numbers H.

Uniform convergence: Suppose {fn} is a sequence of functions sharing the
same domain and codomain. The sequence {fn} converges uniformly to f
means that fH(x) ≈ f (x) for all x (both standard and non-standard) in the
domain of fn and for all infinitely large natural numbers H.
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Assumptions

Assumption 1: {fn} is a sequence of real-valued continuous functions
defined on a closed and bounded interval [a, b].

Assumption 2: fn(x) ≥ 0, ∀x ∈ [a, b] and ∀n ∈ N.

Assumption 3:
∑N

n=0 fn(x) is limited ∀x ∈ [a, b] and ∀N ∈ N.

Assumption 4: ∃c ∈ [a, b] s.t. fn(x) ≤ fn(c), ∀x ∈ [a, b] and ∀n ∈ N.

Assumption 5: Let gN(x) =
∑N

n=0 fn(x). Then the sequence {gN} is
assumed to converge uniformly to st(gH0(x)) for some i-large H0 ∈ N, i.e.,∑H

n=0 fn(x) ≈ st(
∑H0

n=0 fn(x)), for all x ∈ [a, b] and for all i-large H ∈ N.
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Definite Integral of an Infinite Series

Proof idea. ∫ b

a
st(

H0∑
n=0

fn(x))dx
?
= st(

H0∑
n=0

∫ b

a
fn(x)dx)

∫ b

a
st(

H0∑
n=0

fn(x))dx
?
= st(

∫ b

a

H0∑
n=0

fn(x)dx) = st(

H0∑
n=0

∫ b

a
fn(x)dx)

From Assumptions 2 and 4, ∀stx ∈ [a, b]

0 ≤
H0∑
n=0

fn(x)−
N∑

n=0

fn(x) =

H0∑
n=N+1

fn(x) ≤
H0∑

n=N+1

fn(c)

⇒ 0 ≤ st(

H0∑
n=0

fn(x)−
N∑

n=0

fn(x)) ≤ st(

H0∑
n=N+1

fn(c))

⇒ 0 ≤ st(

H0∑
n=0

fn(x))−
N∑

n=0

fn(x) ≤ st(

H0∑
n=N+1

fn(c)) (1)
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Definite Integral of an Infinite Series

By the transfer principle, (1) holds for all x ∈ [a, b]. Then, from Theorem
2, ∀x ∈ [a, b]

0 ≤
∫ b

a
(st(

H0∑
n=0

fn(x))−
N∑

n=0

fn(x))dx ≤ st(

H0∑
n=N+1

fn(c))(b − a) (2)

From Assumption 5,
∑H

n=0 fn(x) ≈ st(
∑H0

n=0 fn(x)),∀x ∈ [a, b]

⇒ st(

H0∑
n=0

fn(x))−
H∑

n=0

fn(x) ≈ 0,∀x ∈ [a, b]

⇒ st(

H0∑
n=H+1

fn(x)) ≈ 0,∀x ∈ [a, b]

⇒ st(

H0∑
n=H+1

fn(c)) ≈ 0, since c ∈ [a, b] (3)
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Definite Integral of an Infinite Series

From (2) and (3), choose N = H0∫ b

a
(st(

H0∑
n=0

fn(x))−
H0∑
n=0

fn(x))dx ≈ 0

Next step∫ b

a
(st(

H0∑
n=0

fn(x))−
H0∑
n=0

fn(x))dx =

∫ b

a
st(

H0∑
n=0

fn(x))dx −
∫ b

a

H0∑
n=0

fn(x)dx

Then ∫ b

a
st(

H0∑
n=0

fn(x))dx ≈
∫ b

a

H0∑
n=0

fn(x)dx

Or ∫ b

a
st(

H0∑
n=0

fn(x))dx = st(

∫ b

a

H0∑
n=0

fn(x)dx)

�
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Assumptions

Assumption 1: {fn} is a sequence of real-valued continuous functions
defined on a closed and bounded interval [a, b].

Assumption 2: fn(x) ≥ 0, ∀x ∈ [a, b] and ∀n ∈ N.

Assumption 3:
∑N

n=0 fn(x) is limited ∀x ∈ [a, b] and ∀N ∈ N.

Assumption 4: ∃c ∈ [a, b] s.t. fn(x) ≤ fn(c), ∀x ∈ [a, b] and ∀n ∈ N.

Assumption 5: Let gN(x) =
∑N

n=0 fn(x). Then the sequence {gN} is
assumed to converge uniformly to st(gH0(x)) for some i-large H0 ∈ N, i.e.,∑H

n=0 fn(x) ≈ st(
∑H0

n=0 fn(x)), for all x ∈ [a, b] and for all i-large H ∈ N.
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Dini Uniform Convergence Theorem

Theorem 8 (Dini uniform convergence theorem)

A monotone sequence of continuous functions {fn} that converges
pointwise to a continuous function f on a closed and bounded interval
[a, b] is uniformly convergent.
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Dini Uniform Convergence Theorem

Proof idea. Without loss of generality, assume {fn} is monotonically
increasing. ∀x ∈ [a, b],∀ i-large H ∈ N

|fH(x)− f (x)|
=|fH(x)−fH(st(x)) + fH(st(x))−f (st(x)) + f (st(x))− f (x)|
≤|fH(x)− fH(st(x))|+ |fH(st(x))− f (st(x))|+ |f (st(x))− f (x)|

Lemma: If x ∈ [a, b] then st(x) ∈ [a, b] (note that this is only true on
closed and bounded intervals).

Since st(x) is standard, fH(st(x)) ≈ f (st(x)) by the pointwise convergence
of {fn}.

Since st(x) is standard and x ≈ st(x), f (st(x)) ≈ f (x) by the continuity of
f .

If we can show that fH(x) ≈ fH(st(x)), then fH(x) ≈ f (x) for all x ∈ [a, b].
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Dini Uniform Convergence Theorem

By the continuity of {fn}, we have fn(x) ≈ fn(st(x)),∀x ∈ [a, b] and
∀stn ∈ N.

Proof obligation: fH(x) ≈ fH(st(x)), ∀x ∈ [a, b] and ∀H ∈ N.

Idea: Apply the overspill principle in non-standard analysis.
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Overspill Principle

Overspill principle: Let P(n, x) be a classical predicate. Then

∀x(∀stn ∈ N,P(n, x)⇒ ∃¬stk ∈ N,P(k , x))

Apply the above principle, we can even come up with a stronger statement
as follows:

Let P(n, x) be a classical predicate. Then

∀x(∀stn ∈ N,P(n, x)⇒ ∃¬stk ∈ N, ∀m ∈ N(m ≤ k ⇒ P(m, x)))
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Dini Uniform Convergence Theorem

Define a classical predicate P(n, x , x0) as follows:

P(n, x , x0) ≡ |fn(x)− fn(x0)| < 1

n + 1

Let x ∈ [a, b] and x0 = st(x), then P(n, x , st(x)) holds for all standard
n ∈ N by the continuity of {fn}. Hence, by the overspill principle, there
exists a non-standard k ∈ N s.t. P(m, x , st(x)) holds for all m ∈ N and
m ≤ k .

If m is non-standard, then

0 ≤ |fm(x)− fm(st(x))| < 1

m + 1
≈ 0

⇒ fm(x) ≈ fm(st(x))

Thus, fH(x) ≈ f (x) for all x ∈ [a, b] and for all i-large H ≤ k .
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Dini Uniform Convergence Theorem

If H > k, then by the monotonicity of {fn}

0 ≤ |fH(x)− f (x)| ≤ |fk(x)− f (x)| ≈ 0

⇒ fH(x) ≈ f (x),∀x ∈ [a, b]

�
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Relaxing Assumption 5

Assumption 5: Let gN(x) =
∑N

n=0 fn(x). Then the sequence {gN} is
assumed to converge uniformly to st(gH0(x)) for some i-large H0 ∈ N, i.e.,∑H

n=0 fn(x) ≈ st(
∑H0

n=0 fn(x)), for all x ∈ [a, b] and for all i-large H ∈ N.

Assumption 5.1: The limit function st(
∑H0

n=0 fn(x)) is continuous on [a, b]
for some i-large H0 ∈ N.

Assumption 5.2: Let gN(x) =
∑N

n=0 fn(x). Then the sequence {gN} is
assumed to converge pointwise to the continuous function st(gH0(x)) for
some i-large H0 ∈ N, i.e.,

∑H
n=0 fn(x) ≈ st(

∑H0
n=0 fn(x)),∀stx ∈ [a, b] and

for all i-large H ∈ N.
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Conclusions and Future Work

Adding an extra argument in constrained functions solves the problem of
functionally instantiating non-classical theorems with classical functions
containing free variables.

Free variables are allowed to appear in pseudo-lambda expressions when
functionally instantiating classical theorems, as long as classicalness is
preserved.

Fourier coefficient formula can be formalized in ACL2(r) as described.

Still remain a couple of proof obligations in formalizing the definite
integral of an infinite series. E.g., the overspill principle in proving Dini
uniform convergence theorem.

It would be nice if we can apply ACL2(r) to circuit verification!
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Questions!

Cuong Chau (UT Austin) Fourier Coefficient Formalization in ACL2(r) April 17, 2015 53 / 53


	Overview
	Fourier Coefficient Formalization
	Definite Integral of an Infinite Series
	Conclusions and Future Work

