
Verifying Cache
Coherence in ACL2

Ben Selfridge
Oracle / UT Austin

Goals of this talk
• Define cache coherence

• Present a cache coherence protocol I designed

• Present an ACL2 proof that the protocol is “safe” (whatever
that means)

• Discuss how we might use ACL2 to verify more
complicated protocols

• Is it worth it? (Why not just use a model checker?)

• Is it possible? (Inductive invariants are hard…)

Goals of this talk
• Define cache coherence

• Present a cache coherence protocol I designed

• Present an ACL2 proof that the protocol is “safe” (whatever
that means)

• Discuss how we might use ACL2 to verify more
complicated protocols

• Is it worth it? (Why not just use a model checker?)

• Is it possible? (Inductive invariants are hard…)

What are caches?
• Small, quick-access memory on a chip

• Used for repeated accesses to the same locations

• To read/write, the processor must obtain the line
from memory, copy it to cache

• When it’s done writing, the cache line is copied
back to main memory (at some point)

Cache Coherence

• With 2+ processors, this gets complicated

• We can allow multiple processors to read
simultaneously

• But write simultaneously? Hmm…

Cache Coherence

1 2
0 0

Cache Coherence

1 2
3 0

Cache Coherence

1 2
3 4

Cache Coherence

1 2

Both caches believe they have up-to-date copies
of the memory location, but they see different values!

BAD!!!

3 4

Cache Coherence
• To prevent this from happening, add state to each

cache line (invalid, read-only, read-write)

• Two in read-only? Allowed

• Two in read-write? Not Allowed

• One in read-only, one in read-write? Not Allowed

• These guarantees are commonly called cache
coherence.

Cache Coherence Protocols
• To ensure coherence, cache coherence protocols are used to

manage the state across caches

• Cores send messages to communicate

• If I want a cache line, I must request it

• If I hold a cache line, I must send my data back at some
point

• Network properties vary widely between protocols

• Protocols must be designed VERY CAREFULLY to maintain
coherence

Example Protocol: “VI”
• I designed a simple cache coherence protocol

called VI.

• Cache lines can be in one of two states:

• V = “valid” (read/write)

• I = “invalid”

• There is no read-only state!

Example Protocol: “VI”
• There are n caches along with an additional agent,

the directory, residing in the main memory

• The directory keeps track of who currently
“owns” each cache line (either a cache, or the
main memory)

• For the remainder of this talk, assume there is only
one cache line that can be shared between
memory and caches. (This avoids confusion.)

Caveat: Dir “state” is
interpreted differently

• The Directory has two states, I and V

• Dir in state I means “Dir has the data, and no one
else does”

• Dir in state V means “Dir does not have the data;
either someone else has it in state V, or it’s currently
in transit”

• Remember this, otherwise you’ll get confused

VI Transition Tables
load/
store evict Data Fwd-Get Put-Ack

I Send Get to
Dir / IVD ILLEGAL ILLEGAL ILLEGAL ILLEGAL

IVD stall stall Copy to cache
/ V stall

V perform load/
store

Send Put to Dir
/ VIA ILLEGAL Send Data to

Req / I ILLEGAL

VIA stall stall ILLEGAL Send Data to
Req / IIA -/I

IIA stall stall ILLEGAL ILLEGAL -/I

Cache Controller

VI Transition Tables
load/
store evict Data Fwd-Get Put-Ack

I Send Get to
Dir / IVD ILLEGAL ILLEGAL ILLEGAL ILLEGAL

IVD stall stall Copy to cache
/ V stall

V perform load/
store

Send Put to Dir
/ VIA ILLEGAL Send Data to

Req / I ILLEGAL

VIA stall stall ILLEGAL Send Data to
Req / IIA -/I

IIA stall stall ILLEGAL ILLEGAL -/I

Cache Controller

“stable”
states

VI Transition Tables
load/
store evict Data Fwd-Get Put-Ack

I Send Get to
Dir / IVD ILLEGAL ILLEGAL ILLEGAL ILLEGAL

IVD stall stall Copy to cache
/ V stall

V perform load/
store

Send Put to Dir
/ VIA ILLEGAL Send Data to

Req / I ILLEGAL

VIA stall stall ILLEGAL Send Data to
Req / IIA -/I

IIA stall stall ILLEGAL ILLEGAL -/I

Cache Controller

“transient”
states

VI Transition Tables

Get Put (from
owner)

Put (from
non-owner)

I
(Cache line in

main mem only)

Send Data to Req,
set Owner to Req / V ILLEGAL

Send Put-Ack to
Req
/ -

V
(some cache has

cache line in
state V)

Send Fwd-Get to
Owner, set Owner to

Req / V

Copy data to
memory, send Put-
Ack to Owner, clear

Owner / I

Send Put-Ack to
Req
/ -

Directory Controller

Example Protocol: “VI”

Before we go any further, let’s take a look at how this
protocol works in practice.

Dir1

I I

“Get” transaction

Data

Dir1

I I

“Get” transaction

Cache 1 wishes to obtain the cache line.
Dir is in state I, indicating no other cache

currently has the data.

Data

Dir1

I I

“Get” transaction

Data

Dir1

IVDI IGet

Data

“Get” transaction

Dir1

IVDI IGet

Data

V1

Data

“Get” transaction

Dir1

IVDI Get

Data

V I V1

Data

“Get” transaction

Dir1

V1V

Data

“Get” transaction

Dir1

V1V

Cache 1 has successfully obtained
the cache line.

Data

“Get” transaction

Dir1

V1V

Data

“Get” transaction

Dir1

V1V

2

I

Data

“Get” transaction

Dir1

V1V

2

I

Cache 2 wants to obtain the cache line,
and Cache 1 already has it.

Data

“Get” transaction

Dir1

V

2

IVDI

V1

Get

Data

“Get” transaction

Dir1

V1V

2

IVDI

V2Fwd-Get

Get

Data

“Get” transaction

Dir1

I

2

Get
IVDI

Fwd-Get V1 V2

Data

V

Data

“Get” transaction

Dir1

2

Get
IVDI

Fwd-Get V1 V2

Data
V

IV

Data

“Get” transaction

Dir1

I

2

V2

V

Data

“Get” transaction

Dir1

I

2

V2

V

Cache 2 has successfully obtained
the cache line.

Data

“Get” transaction

Dir1

V1V

Data

“Put” transaction

Dir1

V1V

Cache 1 has the cache line, and
wishes to evict (transition to I).

Data

“Put” transaction

Dir1

V1V PutVIA

Cache 1 sends a Put to Dir, but does
not evict the cache line yet.

Data

Data

“Put” transaction

Dir1

V1V PutVIA

Put-Ack

I

DataData

When Cache 1 receives Put-Ack from Dir,
it is safe to evict the cache line.

“Put” transaction

Dir1

V1V PutVIA

Put-Ack

II

Data

“Put” transaction

When Cache 1 receives Put-Ack from Dir,
it is safe to evict the cache line.

Dir1

II

Cache 1 has successfully evicted,
and Dir now “owns” the data.

Data

“Put” transaction

Dir1

V1V

2

I
What if Cache 1 Puts, and Cache 2

Gets at the same time?

Data

Put/Get race

Dir1

V1

2

Put

I

Data

Data

V VIA

Put/Get race

Dir1

V1

2

I

Put

Get

IVD

Data

Data

V VIA

Put/Get race

Dir1

V1

2

Put

Get

???

I IVD

Which message arrives first?

Data

Data

V VIA

Put/Get race

Dir1

V1

2

Put

Get

I IVD

Suppose the Put from Cache 1 arrives first.
(We will explore the other case in a moment.)

Data

Data

V VIA

Put/Get race

Dir1

V1

2

Put

Get

Put-Ack

I

I IVD

Data Data

V VIA

Put/Get race

Dir1

V1

2

Put

Get

Put-Ack

I

Data

V2

I IVD

Data

Data

V VIA

Put/Get race

Dir1

V1V

2

PutVIA

Get

Put-Ack

I V2I

I IVD

Data

Put/Get race

Data

Dir1

V1V

2

PutVIA

Get

Put-Ack

I

I IVD

V2I

V
Data

Put/Get race

Data

Dir1

V1V

2

PutVIA

Get

Put-Ack

I

I IVD

V2I

V
Since Dir received the Put first, there is no
need for the two Caches to communicate

directly.

Data

Put/Get race

Data

Dir1

2

V2I

V
Data

Put/Get race

Dir1

2

V2I

V
Cache 1 has evicted successfully, and Cache 2

has obtained the cache line successfully.

Data

Put/Get race

Dir1

V1V

2

PutVIA

Get

???

I IVD

Data

Data

Put/Get race

Dir1

V1

2

Put

Get

V VIA

I IVD

Data

Data

Put/Get race

Now, suppose Dir received the Get first.

Dir1

V1

2

Put

Get

Fwd-Get

V2V VIA

I IVD

First, Dir forwards the Get request to Cache 1,
since Cache 1 is still the owner.

Data

Data

Put/Get race

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack

V VIA

I IVD

Then, Dir receives Cache 1’s Put. Since Cache 1
is no longer the owner, Dir simply responds with a

Put-Ack, and throws out the incoming Data.

Data

Put/Get race

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack???

V VIA

I IVD

Which message arrives first?

Data

Put/Get race

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack

V VIA

I IVD

Suppose the Fwd-Get arrives first.

Data

Put/Get race

Dir1

V1V

2

PutVIA

Get

Fwd-Get

V2

Put-Ack

Data

IIA

I IVD

Because Cache 1 hasn’t evicted yet, he still has
the data. He sends it along to Cache 2 and evicts

(although he still awaits a Put-Ack from Dir).

Data

Put/Get race

Dir1

V1V

2

PutVIA

Get

Fwd-Get

V2

Put-Ack

IIA I

I IVD

Cache 1 receives the Put-Ack, and transitions to I.

Data

Put/Get race

Data

Dir1

V1V

2

PutVIA

Get

I IVD

Fwd-Get

V2

Put-Ack

IIA I

V

Cache 2 receives the Data, and transitions to V.

Data

Put/Get race

Data

Dir1

2

V2I

V
Data

Put/Get race

Dir1

2

V2I

V
Cache 2 has upgraded successfully. Cache 1’s attempt
to evict was effectively “aborted” since the Get request

was serviced before the Put request arrived.

Data

Put/Get race

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack???

V VIA

I IVD

Put/Get race

Data

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack

V VIA

I IVD

Put/Get race

Now, suppose Cache 1 receives the Put-Ack first.

Data

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack

V VIA I

Cache 1, having received Put-Ack, evicts the cache line.
(Um…. where’s the data?)

I IVD

Put/Get race

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack

V VIA I

Then, Cache 1 receives a Fwd-Get. He can’t forward
the data, because he already evicted!

BAD!!!!

I IVD

Put/Get race

Dir1

V1

2

Put

Get

Fwd-Get

V2

Put-Ack

V VIA I

Solution: use the same “channel” for Fwd-Get and
Put-Ack, and require point-to-point ordering.

BAD!!!!

I IVD

Put/Get race

Lesson: A cache coherence protocol may seem
relatively simple, but concurrency and data races

can lead to some odd behavior.

We need to be VERY careful when designing these
protocols in order to ensure bad things don’t

happen.

Put/Get race

Correctness of VI
• We wish to demonstrate that the VI cache

coherence protocol is correct.

• For our protocol, this means that no two caches
can have the cache line in state V simultaneously.

• We believe we have designed our protocol well, but
it’s actually deceptively complicated

• We used ACL2 to construct an invariant-style proof
of this property

Proof strategy
1. Let P1 = property we want to prove is an invariant

2. Let Props = {P1}

3. for each Pi in Props:

A. Try to prove: Props(m) -> Pi(step m)

B. For each failed subgoal, create new Pj that lets us prove that subgoal,
and add it to Props until A is proved by ACL2

C. Repeat until we have proved everything in Props is preserved by step

4. We have shown Props(m) -> Props(step m). Since P1 is in Props, we have
shown that if we start from a state where Props(m) is true, then we can run
the protocol as long as we want, and P1 will always be true.

Next time

• I’ll present the correctness proof in some detail.

• I’ll talk about some ideas I’ve had for using ACL2
both to design AND verify complex, scary cache
protocols.

Proving correctness
• In industry, model checkers are usually used to verify

coherence for these protocols.

• For complicated protocols, model checkers can fail to
terminate fast enough.

• Even if you manage to get model checker to finish the
proof, you may need to make so many simplifications in
the encoding that the “proof” won’t actually convince too
many people.

• I’m interested how a theorem prover like ACL2 can be
used to aid in these verification efforts.

Other stuff

Correctness of VI: Initial
Attempt

• At first, we started the proof by
specifying correctness as “no
two caches are in state V”

• We then asked ACL2 to prove
that this property was
preserved by all transitions

• Each failed subgoal
suggested a new property we
needed to assume

• The hope: at some point, these
invariants will become
“closed”

Correctness of VI: Initial
Attempt

• I discovered after a lengthy, time-consuming proof
attempt, that I had ended needing to assume an invariant
that I couldn’t prove

• I couldn’t prove it because the property “blew up” - in
order to prove it, I needed to assume something more
complicated, and then to prove the more complicated
property, I needed to assume something even MORE
complicated, etc.

• I still can’t figure out exactly where I went wrong; if anyone
has any intuition, or is interested enough to discuss it, let
me know

I needed to prove that this could never happen:

1

V

Dir

V2

Data

2

V

Data

It’s clear why - both Cache 1 and 2 are in V.
The Dir thinks 2 is the owner.

I needed to prove that this could never happen:

1

V

Dir

V2

Data

2

V

Data

Let’s backtrack and see how this could have happened…

I needed to prove that this could never happen:

1

V

Dir

V2

Data

Let’s backtrack and see how this could have happened…

2

V

Data

I needed to prove that this could never happen:

1

V

Dir

V2

Data

Let’s backtrack and see how this could have happened…

2

V

Data

3

I

I needed to prove that this could never happen:

1

V

Dir

V2

Data

2

IVD

Let’s backtrack and see how this could have happened…

3
Data

I

I needed to prove that this could never happen:

1

V

Dir

V2

Data

2

IVD

Let’s backtrack and see how this could have happened…

3
Data

V
Fwd-Get2

I needed to prove that this could never happen:

1

V

Dir

V2

Data

2

IVD

Let’s backtrack and see how this could have happened…

3

V
Fwd-Get2

4

I

I needed to prove that this could never happen:

1

V

Dir

V2

Data

2

IVD

Let’s backtrack and see how this could have happened…

3 Data

V
Fwd-Get2

4

I

