Expressing Symmetry Breaking in Propositional Proofs

Marijn J.H. Heule
THE UNIVERSITY OF
TEXAS
——AT AUSTIN ——

Joint work with
Warren Hunt, Jr. and Nathan Wetzler
ACL2 Seminar, November 2, 2015

Introduction and Motivation

Symmetry Breaking in SAT Solvers
Breaking a Single Symmetry
Breaking Multiple Symmetries

Tools and Evaluation

Conclusions

Motivation

Satisfiability solvers are used in amazing ways...

- Hardware verification: Centaur x86 verification
- Combinatorial problems:
- Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]
- Gardens of Eden in Conway's Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]
- Erdős Discrepancy Problem [Konev and Lisitsa, 2014]

Motivation

Satisfiability solvers are used in amazing ways...

- Hardware verification: Centaur x86 verification
- Combinatorial problems:
- Ramsey numbers and van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004; Kouril and Paul, 2008]
- Gardens of Eden in Conway's Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013]
- Erdős Discrepancy Problem [Konev and Lisitsa, 2014]
..., but satisfiability solvers have errors.
- Documented bugs in SAT, SMT, and QBF solvers
[Brummayer and Biere, 2009; Brummayer et al., 2010]
- Implementation errors often imply conceptual errors
- Symmetry breaking, which is crucial to solve combinatorial problems, cannot be validated with existing methods

Symmetry Breaking Tool Chain

1. The input formula is transformed into a clause-literal graph;
2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4. The symmetry-free formula is solved using a SAT solver.

A bug in any of these tools may result in incorrect results
Most observed bugs during SAT Competition 2013 were caused by tools 1-3

From Resolution to Clausal DRAT Proofs

Easy to Emit

Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Compact

Clausal proofs + clause deletion Heule, Hunt, Jr., and Wetzler [STVR 2014]

Optimized clausal proof checker
Heule, Hunt, Jr., and Wetzler [FMCAD 2013]

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

From Resolution to Clausal DRAT Proofs

Easy to Emit

Compact

Resolution Proofs
Zhang and Malik, 2003
Van Gelder, 2008; Biere, 2008
Clausal Proofs
Goldberg and Novikov, 2003
Van Gelder, 2008

Clausal proofs + clause deletion Heule, Hunt, Jr., and Wetzler [STVR 2014]

Checked Efficiently

Expressive

Clausal RAT proofs
Heule, Hunt, Jr., and Wetzler [CADE 2013]

DRAT proofs (RAT + deletion)
Wetzler, Heule, and Hunt, Jr. [SAT 2014]

Main Contribution

We present a method to express the addition of symmetry-breaking predicates in DRAT, a clausal proof format supported by top-tier solvers.

Our method allows, for the first time, validation of SAT solver results obtained via symmetry breaking, thereby validating the results of symmetry extraction tools as well.

Symmetry Breaking in SAT Solvers

Solution Symmetry

A truth assignment τ is a set of non-complementary literals. τ satisfies formula F if it contains a literal for each clause in F.

A signed variable permutation $\pi:=\left(x_{1}, \ldots, x_{n}\right)\left(p_{1}, \ldots, p_{n}\right)$ maps literals x_{i} onto p_{i} and \bar{x}_{i} onto \bar{p}_{i} with p_{i} either equal to x_{j} or \bar{x}_{j} and $\operatorname{var}\left(p_{i}\right) \neq \operatorname{var}\left(p_{j}\right)$ if $i \neq j$ with $1 \leq i, j \leq n$.

Example

- Let $\tau=\{x, \bar{y}, z\}$ and $\pi=(x, y, z)(y, \bar{z}, \bar{x})$.
- $\pi(\tau)=\{y, z, \bar{x}\}$
$T(F)$: the set of satisfying truth assignments for formula F.
A solution symmetry σ for a given formula F is a signed variable permutation such that $\forall \tau . \tau \in T(F) \rightarrow \sigma(\tau) \in T(F)$

Solution Symmetries and Non-Monochromatic Rectangles A solution symmetry σ for a given formula F is a signed variable permutation such that $\forall \tau . \tau \in T(F) \rightarrow \sigma(\tau) \in T(F)$

Color the cells of a 4×4 grid either orange (0) or black (1) such that all rectangles have non-monochromatic corners.

This problem contains many solutions symmetries, for example $\sigma_{1}=\left(x_{1}, \ldots, x_{16}\right)\left(\bar{x}_{1}, \ldots \bar{x}_{16}\right), \sigma_{2}=\left(x_{1}, \ldots, x_{16}\right)\left(x_{16}, \ldots, x_{1}\right)$

x_{1}	x_{2}	x_{3}	x_{4}
x_{5}	x_{6}	x_{7}	x_{8}
x_{9}	x_{10}	x_{11}	x_{12}
x_{13}	x_{14}	x_{15}	x_{16}

τ

x_{1}	x_{2}	x_{3}	x_{4}
x_{5}	x_{6}	x_{7}	x_{8}
x_{9}	x_{10}	x_{11}	x_{12}
x_{13}	x_{14}	x_{15}	x_{16}

$\sigma_{1}(\tau)$

x_{1}	x_{2}	x_{3}	x_{4}
x_{5}	x_{6}	x_{7}	x_{8}
x_{9}	x_{10}	x_{11}	x_{12}
x_{13}	x_{14}	x_{15}	x_{16}

$\sigma_{2}(\tau)$

Breaking a Solution Symmetry

A solution symmetry σ for a given formula F is a signed variable permutation such that $\forall \tau . \tau \in T(F) \rightarrow \sigma(\tau) \in T(F)$

Let $\sigma=\left(x_{1}, \ldots, x_{n}\right)\left(p_{1}, \ldots, p_{n}\right)$. A symmetry-breaking predicate B_{σ} is the constraint $x_{1}, \ldots, x_{n} \leq p_{1}, \ldots, p_{n}$.
Example (using $\sigma=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{1}\right)$)

- $B_{\sigma}: x_{1}, x_{2} \leq x_{2}, x_{1}$, which blocks $\tau=\left\{x_{1}, \bar{x}_{2}\right\}$.
- in clausal form: ($\bar{x}_{1} \vee x_{2}$).

Symmetry breaking: if F contains symmetry σ, add B_{σ} to F.
If satisfiable formula F contains a symmetry σ then $F \not \vDash B_{\sigma}$.
Central idea: transform F into an equi-satisfiable formula F^{\prime} by replacing literals I with new literals I^{\prime}, such that $F^{\prime} \models B_{\sigma}^{\prime}$.

Example Formulas: Unavoidable Subgraphs

A connected undirected graph G is an unavoidable subgraph of clique K of order n if any red/blue edge-coloring of the edges of K contains G either in red or in blue.

Ramsey Number $R(k)$: What is the smallest n such that any graph with n vertices has either a clique or a co-clique of size k ?

$$
\begin{aligned}
R(3) & =6 \\
R(4) & =18 \\
43 \leq \quad R(5) & \leq 49
\end{aligned}
$$

SAT solvers can determine that $R(4)=18$ in 1 second using symmetry breaking; w/o symmetry breaking it requires weeks.

Example formula: an unavoidable path of two edges

Consider the formula below - which expresses the statement whether path of two edges unavoidable in a clique of order 3:

$$
F:=\overbrace{(x \vee y)}^{C_{1}} \wedge \overbrace{(x \vee z)}^{C_{2}} \wedge \overbrace{(y \vee z)}^{C_{3}} \wedge \overbrace{(\bar{x} \vee \bar{y})}^{C_{4}} \wedge \overbrace{(\bar{x} \vee \bar{z})}^{C_{5}} \wedge \overbrace{(\bar{y} \vee \bar{z})}^{C_{6}}
$$

A clause-literal graph has a vertex for each clause and literal, and edges for each literal occurrence connecting the literal and clause vertex. Also, two complementary literals are connected.

Symmetry: $(x, y, z)(\bar{y}, \bar{z}, \bar{x})$ is an edge-preserving bijection

Convert Symmetries into Symmetry-Breaking Predicates

A symmetry $\sigma=\left(x_{1}, \ldots, x_{n}\right)\left(p_{1}, \ldots, p_{n}\right)$ of a CNF formula F is an edge-preserving bijection of the clause-literal graph of F, that maps literals x_{i} onto p_{i} and \bar{x}_{i} onto \bar{p}_{i} with $i \in\{1 . . n\}$.

Given a CNF formula F. Let τ be a satisfying truth assignment for F and σ a symmetry for F, then $\sigma(\tau)$ is also a satisfying truth assignment for F.

Symmetry $\sigma=\left(x_{1}, \ldots, x_{n}\right)\left(p_{1}, \ldots, p_{n}\right)$ for F can be broken by adding a symmetry-breaking predicate: $x_{1}, \ldots, x_{n} \leq p_{1}, \ldots, p_{n}$.

$$
\begin{aligned}
& \left(\bar{x}_{1} \vee p_{1}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee p_{2}\right) \wedge\left(p_{1} \vee \bar{x}_{2} \vee p_{2}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3} \vee p_{3}\right) \wedge\left(\bar{x}_{1} \vee p_{2} \vee \bar{x}_{3} \vee p_{3}\right) \wedge \\
& \left(p_{1} \vee \bar{x}_{2} \vee \bar{x}_{3} \vee p_{3}\right) \wedge\left(p_{1} \vee p_{2} \vee \bar{x}_{3} \vee p_{3}\right) \wedge \ldots \\
& \text { Why are we allowed to add these clauses? }
\end{aligned}
$$

Breaking a Single Symmetry

Clausal Proof System

Unsatisfiable $\begin{aligned} & \text { * Learn empty clause }\end{aligned}$
$\xrightarrow{\text { init }} F$

Resolution Asymmetric Tautology (RAT) [IJCAR 2012]

Given a clause $C=\left(I_{1} \vee \cdots \vee I_{k}\right)$ and a CNF formula F :

- \bar{C} denotes the conjunction of its negated literals $\left(\overline{1}_{1}\right) \wedge \cdots \wedge\left(\bar{I}_{k}\right)$
- $F \vdash_{1} \epsilon$ denotes that unit propagation on F derives a conflict
- C is an asymmetric tautology w.r.t. F if and only if $F \wedge \bar{C} \vdash_{1} \epsilon$
- C is a resolution asymmetric tautology on $I \in C$ w.r.t. F iff for all resolvents $C \diamond D$ with $D \in F$ and $\bar{I} \in D$ holds that $F \wedge \overline{C \diamond D} \vdash_{1} \epsilon$

Example
Consider the formula $F=(a \vee c) \wedge(\bar{b} \vee \bar{c}) \wedge(b \vee d)$:

- The clause $(a \vee d)$ is an asymmetric tautology w.r.t. F
- The clause $(b \vee c)$ is an resolution asymmetric tautology w.r.t. F

Theorem: Given a formula F and a clause C having RAT with respect to F, then F and $F \cup\{C\}$ are equi-satisfiable.

Clausal Proof System using RAT addition and deletion

Unsatisfiable

* Learn empty clause

Satisfiable * Forget last clause

\uparrow
Forget: remove a clause * Clause C has RAT w.r.t. $F \backslash\{C\}$

Expressing a Symmetry Breaking Predicate in DRAT (1)

Introduce auxiliary variables using $\sigma=\left(x_{1}, \ldots, x_{n}\right)\left(p_{1}, \ldots, p_{n}\right)$

- The swap variable $s:=x_{1}, \ldots, x_{n}>p_{1}, \ldots, p_{n}$
- The prime variables $x_{i}^{\prime}:= \begin{cases}p_{i} & \text { if } s \text { set to true } \\ x_{i} & \text { otherwise }\end{cases}$

Example (using $\sigma=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{1}\right)$)

- $\operatorname{add}\left(s \vee \bar{x}_{1} \vee x_{2}\right), \operatorname{add}\left(\bar{s} \vee x_{1}\right), \operatorname{add}\left(\bar{s} \vee \bar{x}_{2}\right)$
$-\operatorname{add}\left(x_{1}^{\prime} \vee \bar{s} \vee \bar{x}_{2}\right)$, $\operatorname{add}\left(\bar{x}_{1}^{\prime} \vee \bar{s} \vee x_{2}\right), \operatorname{add}\left(x_{1}^{\prime} \vee s \vee \bar{x}_{1}\right)$, $\operatorname{add}\left(\bar{x}_{1}^{\prime} \vee s \vee x_{1}\right)$

Add symmetry-breaking predicate using the prime variables:

- Add the constraint $x_{1}^{\prime}, \ldots, x_{n}^{\prime} \leq p_{1}^{\prime}, \ldots, p_{n}^{\prime}$

Example (using $\sigma=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{1}\right)$)
$-\operatorname{add}\left(s \vee \bar{x}_{1}^{\prime} \vee x_{2}^{\prime}\right), \operatorname{add}\left(\bar{x}_{1}^{\prime} \vee x_{2}^{\prime}\right)$, delete $\left(s \vee \bar{x}_{1}^{\prime} \vee x_{2}^{\prime}\right)$

Expressing a Symmetry Breaking Predicate in DRAT (2)

Redefine involved clauses

- For each clause $C \in F$ that contains at least one literal / which occurs in the symmetry, add a clause C^{\prime} which is a copy of C with literals I^{\prime} for each such I.
- Remove the original involved clauses.

Example (using $\sigma=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{1}\right)$ and $C=\left(x_{2} \vee \bar{x}_{3}\right)$)

- $\operatorname{add}\left(s \vee x_{2}^{\prime} \vee \bar{x}_{3}\right)$, $\operatorname{add}\left(x_{2}^{\prime} \vee \bar{x}_{3}\right)$, delete $\left(s \vee x_{2}^{\prime} \vee \bar{x}_{3}\right)$, delete $\left(x_{2} \vee \bar{x}_{3}\right)$

Optionally remove all definitions of the first step

- After this step, the resulting formula is equal to the original formula extended with the symmetry-breaking predicate (modulo variable renaming).
- This step reduces validation costs significantly.

Breaking Multiple Symmetries

Difficulties due to Multiple Symmetries: Example

Consider the formula $F=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee x_{3}\right) \vee\left(x_{2} \vee x_{3}\right) \vee\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$ and its two symmetries: $\sigma_{1}=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{1}\right)$ and $\sigma_{2}=\left(x_{2}, x_{3}\right)\left(x_{3}, x_{2}\right)$.

Symmetry breaking will add the predicates $\left(\bar{x}_{1} \vee x_{2}\right)$ and $\left(\bar{x}_{2} \vee x_{3}\right)$. Hence the number of predicates is linear in the number of symmetries.

Breaking σ_{1} using the method shown results in the formula $F^{\prime}=\left(x_{1}^{\prime} \vee x_{2}^{\prime}\right) \wedge\left(x_{1}^{\prime} \vee x_{3}\right) \vee\left(x_{2}^{\prime} \vee x_{3}\right) \vee\left(\bar{x}_{1}^{\prime} \vee \bar{x}_{2}^{\prime} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1}^{\prime} \vee x_{2}^{\prime}\right)$

Breaking σ_{2} afterwards results in a problem as the predicate ($\bar{x}_{1}^{\prime} \vee x_{2}^{\prime}$) cannot be redefined: σ_{2} is not a symmetry for F^{\prime}.

The method shown could only redefine original clauses. As a consequence, to break both σ_{1} and σ_{2}, the method shown needs to be applied multiple times: σ_{1}, σ_{2}, and again σ_{1}.

Difficulties due to Multiple Symmetries: General

Consider a formula F with two symmetries
$\sigma_{1}=\left(x_{1}, \ldots, x_{n}\right)\left(p_{1}, \ldots, p_{n}\right)$ and
$\sigma_{2}=\left(y_{1}, \ldots, y_{n}\right)\left(q_{1}, \ldots, q_{n}\right)$.
Symmetry breaking will add the predicates $x_{1}, \ldots, x_{n} \leq p_{1}, \ldots, p_{n}$ and $y_{1}, \ldots, y_{n} \leq q_{1}, \ldots, q_{n}$. The number of predicates is linear in the number of symmetries.

After breaking σ_{1} with the method shown, resulting in formula F^{\prime}, we cannot simply apply it again, because σ_{2} is not a symmetry of F^{\prime}.

Hence, the method shown can only redefine original clauses.
To obtain a symmetry-free formula, the method shown has to be applied multiple times per symmetry. Even with just two symmetries, one may needs to apply it twice per symmetry.

Break a Symmetry Chain using Sorting Networks

A symmetry chain is a sequence of k symmetries of length $2 n$ with the property that $x_{i, j}=p_{i, j+n}, p_{i, j}=x_{i, j+n}$, and $x_{i+1, j}=x_{i, j+n}$ with $1 \leq i<k$ and $1 \leq j \leq n$.
Example (symmetry chain $\left.\left(x_{1}, x_{5}\right)\left(x_{2}, x_{6}\right)\left(x_{3}, x_{7}\right)\left(x_{4}, x_{8}\right)\right)$

- based on $\sigma_{i}=\left(x_{i}, x_{i+4}, x_{i+1}, x_{i+5}\right)\left(x_{i+1}, x_{i+5}, x_{i}, x_{i+4}\right)$
- results in predicates $x_{1}, x_{5} \leq x_{2}, x_{6} \leq x_{3}, x_{7} \leq x_{4}, x_{8}$

Breaking a symmetry chain comes down at sorting the assignments, which can be realized using a sorting network.

Size k symmetry chain: apply the procedure $\mathcal{O}\left(k \log ^{2} k\right)$ times.

Converting Symmetries into a Symmetry Chain

Q: How to break multiple symmetries in general?
A: Convert them into a symmetry chain.

+ : Limits the size of the partial proof.
-: Breaks the symmetries only partially.

Example

Consider two symmetries: $\sigma_{1}=\left(x_{1}, x_{4}, x_{2}, x_{5}\right)\left(x_{2}, x_{5}, x_{1}, x_{4}\right)$ and $\sigma_{2}=\left(x_{2}, x_{4}, x_{3}, x_{6}\right)\left(x_{3}, x_{6}, x_{2}, x_{4}\right)$. Compute reduced symmetries $\sigma_{1}^{\prime}=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{1}\right)$ and $\sigma_{2}^{\prime}=\left(x_{2}, x_{3}\right)\left(x_{3}, x_{2}\right)$ that form a symmetry chain. Using σ_{1}^{\prime} and σ_{2}^{\prime} to define the swap variable and the symmetry-breaking predicate. Use σ_{1} and σ_{2} for the other definitions.

Tools and Evaluation

Old Tool Chain

1. The input formula is transformed into a clause-literal graph;
2. A symmetry detection tool extracts symmetries from the graph;
3. Symmetry-breaking predicates are added to the input formula;
4. The symmetry-free formula is solved using a SAT solver.

A bug in any of these tools may result in incorrect results
Most observed bugs during SAT Competition 2013 were caused by tools 1-3

New Tool Chain

Only the correctness of the proof checker needs to be trusted

New Tools

The new tool sym2drat:

- Input: CNF formula and symmetries;
- Output: A symmetry-free formula and a partial proof that describes the derivation from the input formula to the symmetry-free formula;
- Uses pairwise sorting to reduce the size of the partial proof.

Merge: simply concatenate using Unix cat
DRAT proof checkers:

- Implemented an extension for drat-trim to validate partial DRAT proofs. This feature was crucial during development for debugging purposes;
- Modified our mechanically-verified proof checker to make it compatible with DRAT proofs.

Evaluation: Ramsey Number Four

Ramsey Number $R(k)$: What is the smallest n such that any graph with n vertices has either a clique or a co-clique of size k ?

$$
\begin{aligned}
R(3) & =6 \\
R(4) & =18 \\
43 \leq \quad R(5) & \leq 49
\end{aligned}
$$

SAT solvers can determine that $R(4)=18$ in 1 second using symmetry breaking; w/o symmetry breaking it requires weeks.

The size of the proof is 20 MB and the time required is 1.8 s
Proof validated with our mechanically-verified checker as well.

Evaluation: Erdős Discrepancy Conjecture

Tinvaice

A computer made a math proof the size of Wikipedia, and humans can't check it

By valentina.palladino on February 19, 2014 02:56 pm
Erdős Discrepancy Conjecture was recently solved using SAT.
The conjecture states that there exists no infinite sequence of $-1,+1$ such that for all d, k holds that $\left(x_{i} \in\{-1,+1\}\right)$:

$$
\left|\sum^{k} x_{i d}\right| \leq 2 \quad \begin{aligned}
& \text { The original DRAT proof was 13Gb. Our } \\
& \text { new proof using symmetry breaking is } 2 \mathrm{~Gb} .
\end{aligned}
$$

Evaluation: Two Pigeons per Hole Problems

Biere proposed benchmarks expressing whether $2 n+1$ pigeons can be put in n holes that contain at most two pigeons per hole.

For $n>6$ they can only be solved by symmetry breaking or cardinality resolution.

No SAT solvers can produce a proof for the problems with $n>6$.
Our method can produce proofs for problems with $n \leq 12$ that can be generated in minutes and validated within an hour.

Conclusions

Conclusions

Conclusions:

- The first approach to validate symmetry-breaking techniques usage in SAT solvers by expressing the techniques as DRAT proof steps;
- Increases the trust in results based on symmetry breaking;
- Evaluated our method on hard-combinatorial formulas.

Future work:

- Determine precisely the number of times the symmetry-breaking procedure needs to be applied;
- Improve the speed of the mechanically-verified checker;
- Implement a parallel proof checker to reduce the gap between solving and verification costs.

Conclusions

Conclusions:

- The first approach to validate symmetry-breaking techniques usage in SAT solvers by expressing the techniques as DRAT proof steps;
- Increases the trust in results based on symmetry breaking;
- Evaluated our method on hard-combinatorial formulas.

Future work:

- Determine precisely the number of times the symmetry-breaking procedure needs to be applied;
- Improve the speed of the mechanically-verified checker;
- Implement a parallel proof checker to reduce the gap between solving and verification costs.

> Thanks! Questions?

