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Motivation

Iterative constructs are common in all

programming languages — except ACL2.

∑

x∈′(1 2 3)

x2

(loop for x in ’(1 2 3) sum (sq x))

(sumlist ’(1 2 3) ’sq)
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Motivation

Iterative constructs are common in all

programming languages — except ACL2.

∑

x∈′(1 2 3)

x2

(loop for x in ’(1 2 3) sum (sq x))

=

(Sumlist ’(1 2 3) ’sq)

Note that if we had mapping functions we

could define a LOOP macro.
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But in ACL2. . .

(defun sum-sq (lst)

(if (endp lst)

0

(+ (sq (car lst))

(sum-sq (cdr lst)))))

(sum-sq ’(1 2 3))
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Now Write These in ACL2

∑

x∈′(1 2 3)

x3

∑

x∈′(1 2 3)

x2 + x

∑

x∈′(1 2 3)

x2 + 2x+ 1
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Each requires a different ACL2 function,

sum-sq,

sum-cubes,

sum-sq+x,

sum-yet-another-poly.
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Two Beautiful Things about Iterative

Notation

Succinct: Many different computations can

be described with the same control

structure.

General: Lemmas can be proved about the

control structure independent of the

particulars.
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∑

x∈(append a b)

γ =
∑

x∈a

γ +
∑

x∈b

γ
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(sum-sq (append a b))

= (+ (sum-sq a) (sum-sq b))

(sum-cubes (append a b))

= (+ (sum-cubes a) (sum-cubes b))

(sum-sq+x (append a b))

= (+ (sum-sq+x a) (sum-sq+x b))

(sum-yet-another-poly (append a b))

= (+ (sum-yet-another-poly a)

(sum-yet-another-poly b))
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Goals

Make it possible to define such functions

as:

(defun sumlist (lst fn)

(if (endp lst)

0

(+ (apply fn (list (car lst)))

(sumlist (cdr lst) fn))))

10



to prove and use such lemmas as:

(defthm sumlist-append

(equal (sumlist (append a b) fn)

(+ (sumlist a fn)

(sumlist b fn))))
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and to reason about and execute such

terms as

(sumlist lst ’sq)

(sumlist lst ’cube)

(sumlist lst ’(lambda (x) (+ (* x x) x)))

(sumlist lst ’(lambda (x) (+ (* x x) (* 2 x) 1)))
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Key: Add Apply

(defun sumlist (lst fn)

(if (endp lst)

nil

(+ (apply fn (list (car lst)))

(sumlist (cdr lst) fn))))

13



Caveats

This is a work in progress.

APPLY is a CLTL function that we cannot

formalize in ACL2’s logic.

We formalize APPLY$.

We will pronouce APPLY$ as though it were

“apply” because “apply dollar” is tedious.
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We confuse macros and functions: e.g., we

might pass ’+ as a function when we

should pass ’binary-+.
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Related Work

To see how something similar was done in

Nqthm see

“The Addition of Bounded Quantification and Partial

Functions to a Computational Logic and Its Theorem Prover,”

R. S. Boyer and J S. Moore. Journal of Automated

Reasoning, Kluwer Academic Publishers, 4(2), 1988, pp.

117-172.

Tech Report version:

http://www.cs.utexas.edu/users/moore/publications/quant.pdf
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Naive Second Order Axiom Scheme

(apply fn args)

=

(fn (car args)

(cadr args)

. . .

(cad. . .dr args))

Thus,

(apply ’* (list 3 7))

= 21

(apply ’append (list ’(1 2 3) ’(a b c)))

= (1 2 3 A B C)
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Naive Second Order Axiom Scheme

(apply fn args)

=

(fn (car args)

(cadr args)

. . .

(cad. . .dr args))

Thus,

(apply ’binary-* (list 3 7))

= 21

(apply ’binary-append (list ’(1 2 3) ’(a b c)))

= (1 2 3 A B C)
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A Problem with Apply

(defun russell (fn) ; benign nonrec def

(not (apply fn (list fn))))

Thus

(russell ’russell)

= ; {def russell}

(not (apply ’russell (list ’russell)))

= ; {naive axiom}

(not (russell ’russell))

Contradiction!
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Taming Apply

It is easy to define a restricted apply$ that

is sound:

(defun apply$ (fn args)

(cond

((eq fn ’CAR) (car (car args)))

((eq fn ’CDR) (cdr (car args)))

((eq fn ’CONS) (cons (car args) (cadr args)))

. . .

))

We could so handle any function that does

not ancestrally depend on apply$.
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But we couldn’t apply sumlist!
∑

y∈ a
(
∑

e ∈ y
e2)

=

(sumlist a ’(lambda (y) (sumlist y ’sq)))
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But we couldn’t apply sumlist!
∑

y∈ a
(
∑

e ∈ y
e2)

=

(sumlist a ’(lambda (y) (sumlist y ’sq)))
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Taming Apply

Our approach to adding apply$ is to

“tame” the naive axiom so that we have

the naive axiom only for “tame”

applications.

We will classify some functions as mapping

functions depending on how they use their

arguments.
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Roughly speaking, we define tameness so

that

• functions ancestrally independent of

apply$ are tame, and

• applications of mapping functions are

tame if their arguments are suitably tame.
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Avoiding (Non-Definitional) Axioms

We have formalized a prototype apply$.

Instead of adding axioms about it we force

the user to provide applicability hypotheses

which

explicitly allow (apply$ ’f . . .) to

be rewritten to (f . . .) when the

arguments are suitably tame.
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Make-Applicable

We have also prototyped an analysis tool

for identifying mapping functions based on

how a function uses its arguments.
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Caveat About Make-Applicable

We suspect our current make-applicable

is inadequate: it might admit mapping

functions that are not in fact applicable.

This does not imperil soundness but might

make some theorems vacuously true.

We foresee strengthening

make-applicable and constructing a

hand proof that it is ok. Stay tuned!
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But Wait!

There is another major problem with apply

that does imperil soundness!
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The LOCAL Problem

(encapsulate nil

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) ’foo) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) ’foo) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))
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The LOCAL Problem

(encapsulate nil

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) ’foo) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) ’foo) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))
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The LOCAL Problem

(encapsulate nil ; Pass 2

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) ’foo) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) ’foo) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))

31



The LOCAL Problem

(encapsulate nil

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) (bar x)) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) (bar x)) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))
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provided

(thm (equal (bar x) ’foo))
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Challenges

Tame the naive apply axiom in a

pragmatically adequate way.

Solve the LOCAL problem.

Show that our solution is not vacuous (to

be explained later).

Think about execution, guards,

attachments, lambda equivalence, . . .
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Pragmatic Adequacy

A demonstration of a certified book

providing apply$ and make-applicable.

But first, Upcoming Seminars and

Future Work.

35



Upcoming Seminars

How apply$ is defined in the apply book.

What we mean by vacuity . . .

and an ACL2-checked construction

showing that a wide variety of

mapping function schemes are

non-vacuous.
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The construction shows that we could limit

make-applicable to the schemes in our

“pragmatic adequacy” demonstration, thus

achieving soundness and non-vacuity.

But we hope to find a construction that

admits more schemes.

To facilitate experimentation we have, for

now, made make-applicable “too loose.”
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Future Work

Further confirming our “pragmatic

adequacy” hypothesis

Proving that our solution is not vacuous

Addressing the executability problem

Simplifying lambda expressions
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The Demo
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