
Adding APPLY to ACL2
(Part 1)

Matt Kaufmann
J Strother Moore

Department of Computer Science
University of Texas at Austin

January, 2016

1



Motivation

Iterative constructs are common in all

programming languages — except ACL2.

∑

x∈′(1 2 3)

x2

(loop for x in ’(1 2 3) sum (sq x))

(sumlist ’(1 2 3) ’sq)

2



Motivation

Iterative constructs are common in all

programming languages — except ACL2.

∑

x∈′(1 2 3)

x2

(loop for x in ’(1 2 3) sum (sq x))

=

(Sumlist ’(1 2 3) ’sq)

Note that if we had mapping functions we

could define a LOOP macro.
3



But in ACL2. . .

(defun sum-sq (lst)

(if (endp lst)

0

(+ (sq (car lst))

(sum-sq (cdr lst)))))

(sum-sq ’(1 2 3))

4



Now Write These in ACL2

∑

x∈′(1 2 3)

x3

∑

x∈′(1 2 3)

x2 + x

∑

x∈′(1 2 3)

x2 + 2x+ 1

5



Each requires a different ACL2 function,

sum-sq,

sum-cubes,

sum-sq+x,

sum-yet-another-poly.

6



Two Beautiful Things about Iterative

Notation

Succinct: Many different computations can

be described with the same control

structure.

General: Lemmas can be proved about the

control structure independent of the

particulars.

7



∑

x∈(append a b)

γ =
∑

x∈a

γ +
∑

x∈b

γ

8



(sum-sq (append a b))

= (+ (sum-sq a) (sum-sq b))

(sum-cubes (append a b))

= (+ (sum-cubes a) (sum-cubes b))

(sum-sq+x (append a b))

= (+ (sum-sq+x a) (sum-sq+x b))

(sum-yet-another-poly (append a b))

= (+ (sum-yet-another-poly a)

(sum-yet-another-poly b))

9



Goals

Make it possible to define such functions

as:

(defun sumlist (lst fn)

(if (endp lst)

0

(+ (apply fn (list (car lst)))

(sumlist (cdr lst) fn))))

10



to prove and use such lemmas as:

(defthm sumlist-append

(equal (sumlist (append a b) fn)

(+ (sumlist a fn)

(sumlist b fn))))

11



and to reason about and execute such

terms as

(sumlist lst ’sq)

(sumlist lst ’cube)

(sumlist lst ’(lambda (x) (+ (* x x) x)))

(sumlist lst ’(lambda (x) (+ (* x x) (* 2 x) 1)))

12



Key: Add Apply

(defun sumlist (lst fn)

(if (endp lst)

nil

(+ (apply fn (list (car lst)))

(sumlist (cdr lst) fn))))

13



Caveats

This is a work in progress.

APPLY is a CLTL function that we cannot

formalize in ACL2’s logic.

We formalize APPLY$.

We will pronouce APPLY$ as though it were

“apply” because “apply dollar” is tedious.

14



We confuse macros and functions: e.g., we

might pass ’+ as a function when we

should pass ’binary-+.

15



Related Work

To see how something similar was done in

Nqthm see

“The Addition of Bounded Quantification and Partial

Functions to a Computational Logic and Its Theorem Prover,”

R. S. Boyer and J S. Moore. Journal of Automated

Reasoning, Kluwer Academic Publishers, 4(2), 1988, pp.

117-172.

Tech Report version:

http://www.cs.utexas.edu/users/moore/publications/quant.pdf

16



Naive Second Order Axiom Scheme

(apply fn args)

=

(fn (car args)

(cadr args)

. . .

(cad. . .dr args))

Thus,

(apply ’* (list 3 7))

= 21

(apply ’append (list ’(1 2 3) ’(a b c)))

= (1 2 3 A B C)

17



Naive Second Order Axiom Scheme

(apply fn args)

=

(fn (car args)

(cadr args)

. . .

(cad. . .dr args))

Thus,

(apply ’binary-* (list 3 7))

= 21

(apply ’binary-append (list ’(1 2 3) ’(a b c)))

= (1 2 3 A B C)

18



A Problem with Apply

(defun russell (fn) ; benign nonrec def

(not (apply fn (list fn))))

Thus

(russell ’russell)

= ; {def russell}

(not (apply ’russell (list ’russell)))

= ; {naive axiom}

(not (russell ’russell))

Contradiction!

19



Taming Apply

It is easy to define a restricted apply$ that

is sound:

(defun apply$ (fn args)

(cond

((eq fn ’CAR) (car (car args)))

((eq fn ’CDR) (cdr (car args)))

((eq fn ’CONS) (cons (car args) (cadr args)))

. . .

))

We could so handle any function that does

not ancestrally depend on apply$.

20



But we couldn’t apply sumlist!
∑

y∈ a
(
∑

e ∈ y
e2)

=

(sumlist a ’(lambda (y) (sumlist y ’sq)))

21



But we couldn’t apply sumlist!
∑

y∈ a
(
∑

e ∈ y
e2)

=

(sumlist a ’(lambda (y) (sumlist y ’sq)))

22



Taming Apply

Our approach to adding apply$ is to

“tame” the naive axiom so that we have

the naive axiom only for “tame”

applications.

We will classify some functions as mapping

functions depending on how they use their

arguments.

23



Roughly speaking, we define tameness so

that

• functions ancestrally independent of

apply$ are tame, and

• applications of mapping functions are

tame if their arguments are suitably tame.

24



Avoiding (Non-Definitional) Axioms

We have formalized a prototype apply$.

Instead of adding axioms about it we force

the user to provide applicability hypotheses

which

explicitly allow (apply$ ’f . . .) to

be rewritten to (f . . .) when the

arguments are suitably tame.

25



Make-Applicable

We have also prototyped an analysis tool

for identifying mapping functions based on

how a function uses its arguments.

26



Caveat About Make-Applicable

We suspect our current make-applicable

is inadequate: it might admit mapping

functions that are not in fact applicable.

This does not imperil soundness but might

make some theorems vacuously true.

We foresee strengthening

make-applicable and constructing a

hand proof that it is ok. Stay tuned!

27



But Wait!

There is another major problem with apply

that does imperil soundness!

28



The LOCAL Problem

(encapsulate nil

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) ’foo) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) ’foo) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))

29



The LOCAL Problem

(encapsulate nil

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) ’foo) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) ’foo) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))

30



The LOCAL Problem

(encapsulate nil ; Pass 2

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) ’foo) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) ’foo) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))

31



The LOCAL Problem

(encapsulate nil

(local (defun foo (x) (nfix x)))

(defthm lemma1

(equal (sumlist ’(1 2 3) (bar x)) 6)))

(defun foo (x) (+ 1 (nfix x)))

(defthm lemma2

(equal (sumlist ’(1 2 3) (bar x)) 9))

(defthm oops nil

:hints (("Goal" :use (lemma1 lemma2))))

32



provided

(thm (equal (bar x) ’foo))

33



Challenges

Tame the naive apply axiom in a

pragmatically adequate way.

Solve the LOCAL problem.

Show that our solution is not vacuous (to

be explained later).

Think about execution, guards,

attachments, lambda equivalence, . . .

34



Pragmatic Adequacy

A demonstration of a certified book

providing apply$ and make-applicable.

But first, Upcoming Seminars and

Future Work.

35



Upcoming Seminars

How apply$ is defined in the apply book.

What we mean by vacuity . . .

and an ACL2-checked construction

showing that a wide variety of

mapping function schemes are

non-vacuous.

36



The construction shows that we could limit

make-applicable to the schemes in our

“pragmatic adequacy” demonstration, thus

achieving soundness and non-vacuity.

But we hope to find a construction that

admits more schemes.

To facilitate experimentation we have, for

now, made make-applicable “too loose.”

37



Future Work

Further confirming our “pragmatic

adequacy” hypothesis

Proving that our solution is not vacuous

Addressing the executability problem

Simplifying lambda expressions

38



The Demo

39


