
Adding APPLY to ACL2
(Part 2)

Matt Kaufmann
J Strother Moore

Department of Computer Science
University of Texas at Austin

January, 2016

1

Background

The apply book defines apply$ and

related concepts and provides rules for

manipulating them.

The rules allow convenient proof of

theorems about such mapping functions as

sumlist, collect, foldr, etc.

2

Sample Theorems from Part 1

(equal (sumlist (ap a b) fn)

(+ (sumlist a fn)

(sumlist b fn)))

(equal (sumlist a

’(lambda (x) (binary-* ’2 x)))

(* 2 (sumlist a ’identity)))

(equal (foldr x ’cons y)

(ap x y))

3

(implies (and (Applicablep sq)

(natp n))

(equal (sumlist (nats n) ’sq)

(+ (/ (expt n 3) 3)

(/ (expt n 2) 2)

(/ n 6))))

4

Part 2

We focus on the rules made available by

the apply book.

5

User Perspective

The important concepts are:

• apply$ and ev$ (and ev$-list)

• tamep-functionp and tamep

• f-classes (used to determine tameness)

• (make-applicable f), an event that

introduces the (Applicablep f)

notation.

6

Manageable Functions

Apply$ can only handle a function if it has

these properties:

• in :logic mode

• returns a single value

• does not use state or stobjs

• does not require trust tags or restricted

syntax to be called

7

Primitives

There are 798 manageable functions in the

Ground Zero theory.

All are built into apply$.

Those primitives are recognized by

apply$-primp and applied by

apply$-prim.

8

Classifying Formals

Let f be a user-defined function with

formals (v1 . . . vn). vi has classification:

• :FN, if vi is used exclusively as a function

(passed ancestrally to apply$)

• :EXPR, if vi is used exclusively as an

expression (passed ancestrally to ev$)

• nil, if vi is never used as a function or

expression, i.e., vi is “vanilla”

9

F-Classes

(f-classes ’f) =

• nil, if f is not manageable or has an

unclassifiable formal

• t, if all formals are “vanilla”

• (c1 . . . cn), at least one formal is

functional or expressional

10

Tamep-Functionp

f is a tame function iff f is

• a symbol and (f-classes f) = t (i.e.,

f is manageable and no formal is used as

a function or expression)

• (lambda (v1 . . . vn) b) and b is a tame

term

11

Tamep
x is tame term iff x is

• a variable or QUOTEd constant

• ((lambda (v1 . . . vn) b) a1 . . . an)

where b and the ai are tame

• (f a1 . . . an) where (f-classes f)

=(c1 . . . cn) and if ci is :FN, ai is a

QUOTEd tame fn, if ci is :EXPR, ai is a

QUOTEd tame term, and else ai is tame.

12

Positive and Negative Examples

(binary-+ ’1 x)

(sumlist lst ’CAR)

(sumlist lst

’(lambda (x)

(binary-+ ’1 x)))

(sumlist lst

’(lambda (x)

(sumlist x ’CAR)))

(sumlist lst

’(lambda (x)

(sumlist x (foo y))))

13

Rules about f-classes

(defthm f-classes-primitive

(implies (apply$-primp f)

(equal (f-classes f) t)))

(defthm f-classes-apply$

(equal (f-classes ’APPLY$) ’(:FN NIL)))

(defthm f-classes-ev$

(equal (f-classes ’EV$) ’(:EXPR NIL)))

14

Rules about ev$

(defthm ev$-def-fact

(implies (tamep x)

(equal (ev$ x a)

(cond

((variablep x) (cdr (assoc x a)))

((fquotep x) (cadr x))

((eq (car x) ’IF)

(if (ev$ (cadr x) a)

(ev$ (caddr x) a)

(ev$ (cadddr x) a)))

(t (apply$ (car x)

(ev$-list (cdr x) a)))))))

This is stored as several :rewrite rules.
15

Rules about ev$-list

(defthm ev$-list-def

(equal (ev$-list x a)

(cond

((endp x) nil)

(t (cons (ev$ (car x) a)

(ev$-list (cdr x) a))))))

Stored as a :definition rule.

16

Rules about apply$

(defthm apply$-primitive

(implies (apply$-primp f)

(equal (apply$ f args)

(apply$-prim f args))))

(defthm beta-reduction

(equal (apply$ (list ’LAMBDA vars body) args)

(ev$ body (pairlis$ vars args))))

17

Rules about User-Defined f

We’ve explained apply$ for

lambda-expressions and primitives.

But what about user-defined functions?

If f is a user-defined function,

(apply$ f args)

= (apply$-nonprim f args),

where apply$-nonprim is undefined (a

defstub).

18

How Do We Prove Anything?

So how do you prove

(equal (sumlist ’(1 2 3) ’sq)

14)

19

How Do We Prove Anything?

So how do you prove

(implies [∀ args : (apply$ ’sq args) = (sq (car args))]

(equal (sumlist ’(1 2 3) ’sq)

14))

20

How Do We Prove Anything?

So how do you prove

(implies [∀ args : (apply$ ’sq args) = (sq (car args))]

(equal (sumlist ’(1 2 3) ’sq)

14))

Note that this solves the LOCAL problem

because now the theorem mentions the

function sq.

21

How Do We Prove Anything?

So how do you prove

(implies [∀ args : (apply$ ’sq args) = (sq (car args))]

(equal (sumlist ’(1 2 3) ’sq)

14))

But we can’t write ∀ so we use defun-sk

to introduce a Applicablep-SQ to express

that quantified hypothesis.

22

How Do We Prove Anything?

So how do you prove

(implies (Applicablep-SQ)

(equal (sumlist ’(1 2 3) ’sq)

14))

But we can’t write ∀ so we use defun-sk

to introduce a Applicablep-SQ to express

that quantified hypothesis.

23

How Do We Prove Anything?

So how do you prove

(implies (Applicablep SQ)

(equal (sumlist ’(1 2 3) ’sq)

14))

But we can’t write ∀ so we use defun-sk

to introduce a Applicablep-sq to express

that quantified hypothesis.

(Applicablep SQ) is just an abbreviation

for (Applicablep-SQ).

24

Rules about User-Defined f

You must use (make-applicable f) to

tell apply$ about f .

If f is not manageable,

(make-applicable f) causes an error.

Otherwise, it executes a defun-sk to

introduce Applicablep-f .

25

Then make-applicable proves rules

about Applicablep-f .

The forms of the defun-sk and the rules

depend on whether f is tame.

26

(make-applicablep ap)

(defthm apply$-AP

(implies (force (Applicablep-AP))

(and (equal (f-classes ’AP) t)

(equal (apply$ ’AP args)

(ap (car args)

(cadr args))))))

27

(make-applicablep sumlist)

(defthm apply$-SUMLIST

(and

(implies (force (Applicablep-SUMLIST))

(equal (f-classes ’SUMLIST) ’(NIL :FN)))

(implies (and (force (Applicablep-SUMLIST))

(tamep-functionp (cadr args)))

(equal (apply$ ’SUMLIST args)

(sumlist (car args)

(cadr args))))))

28

Defun-sk for Applicablep-SUMLIST

(defun-sk Applicablep-SUMLIST ()

(forall (args)

(and (equal (f-classes-nonprim ’SUMLIST)

’(NIL :FN))

(implies (tamep-functionp (cadr args))

(equal (apply$-nonprim ’SUMLIST args)

(sumlist (car args)

(cadr args)))))))

29

. . . From Which We Can Prove

(defthm apply$-SUMLIST

(and

(implies (force (Applicablep-SUMLIST))

(equal (f-classes ’SUMLIST) ’(NIL :FN)))

(implies (and (force (Applicablep-SUMLIST))

(tamep-functionp (cadr args)))

(equal (apply$ ’SUMLIST args)

(sumlist (car args)

(cadr args))))))

30

Because f-classes-nonprim and

apply$-nonprim are undefined, it is

impossible to evaluate, prove, or disprove

(Applicablep-SUMLIST).

(defun-sk Applicablep-SUMLIST ()

(forall (args)

(and (equal (f-classes-nonprim ’SUMLIST)

’(NIL :FN))

(implies (tamep-functionp (cadr args))

(equal (apply$-nonprim ’SUMLIST args)

(sumlist (car args)

(cadr args)))))))

31

Vacuity

Can we be sure that there is some way to

define f-classes-nonprim and

apply$-nonprim so that

[∀ args :

(f-classes-nonprim ’SUMLIST) = ’(NIL :FN)

∧

((tamep-functionp (cadr args))

→

(apply$-nonprim ’SUMLIST args)

=

(sumlist (car args)

(cadr args)))]

32

More Precisely

Given any collection of non-erroneous

make-applicable events can we define

f-classes-nonprim and apply$-nonprim so

that all the Applicablep-f hypotheses

are true?

This is the subject of Part 3.

33

