Adding APPLY to ACL2 (Part 2)

Matt Kaufmann J Strother Moore

Department of Computer Science University of Texas at Austin

January, 2016

Background

The apply book defines apply\$ and related concepts and provides rules for manipulating them.

The rules allow convenient proof of theorems about such mapping functions as sumlist, collect, foldr, etc.

Sample Theorems from Part 1

```
(equal (sumlist (ap a b) fn)
  (+ (sumlist a fn)
                (sumlist b fn)))
```

```
(equal (foldr x 'cons y)
      (ap x y))
```

Part 2

We focus on the rules made available by the apply book.

User Perspective

The important concepts are:

- apply\$ and ev\$ (and ev\$-list)
- tamep-functionp and tamep
- f-classes (used to determine tameness)
- (make-applicable f), an event that introduces the (Applicable f) notation.

Manageable Functions

Apply\$ can only handle a function if it has these properties:

- in :logic mode
- returns a single value
- does not use state or stobjs
- does not require trust tags or restricted syntax to be called

Primitives

There are 798 manageable functions in the Ground Zero theory.

All are built into apply\$.

Those primitives are recognized by apply\$-primp and applied by apply\$-prim.

Classifying Formals

Let f be a user-defined function with formals $(v_1 \dots v_n)$. v_i has classification:

- :FN, if v_i is used exclusively as a function (passed ancestrally to apply\$)
- :EXPR, if v_i is used exclusively as an expression (passed ancestrally to ev\$)
- nil, if v_i is never used as a function or expression, i.e., v_i is "vanilla"

F-Classes

(f-classes 'f) =

- nil, if *f* is not manageable or has an unclassifiable formal
- t, if all formals are "vanilla"
- $(c_1 \dots c_n)$, at least one formal is functional or expressional

Tamep-Functionp

- f is a *tame function* iff f is
- a symbol and (f-classes f) = t (i.e., f is manageable and no formal is used as a function or expression)
- (lambda ($v_1 \dots v_n$) b) and b is a tame term

Tamep

x is tame term iff x is

- a variable or QUOTEd constant
- ((lambda ($v_1 \dots v_n$) b) $a_1 \dots a_n$) where b and the a_i are tame
- ($f a_1 \dots a_n$) where (f-classes f) =($c_1 \dots c_n$) and if c_i is :FN, a_i is a QUOTEd tame fn, if c_i is :EXPR, a_i is a QUOTEd tame term, and else a_i is tame.

Positive and Negative Examples

```
(binary-+ '1 x)
```

```
(sumlist lst 'CAR)
(sumlist lst
        '(lambda (x)
           (binary-+ '1 x)))
(sumlist lst
         '(lambda (x)
             (sumlist x 'CAR)))
(sumlist lst
         '(lambda (x)
            (sumlist x (foo y))))
```

Rules about f-classes

```
(defthm f-classes-primitive
  (implies (apply$-primp f)
            (equal (f-classes f) t)))
```

```
(defthm f-classes-apply$
  (equal (f-classes 'APPLY$) '(:FN NIL)))
```

```
(defthm f-classes-ev$
  (equal (f-classes 'EV$) '(:EXPR NIL)))
```

Rules about ev\$

```
(defthm ev$-def-fact
  (implies (tamep x)
           (equal (ev$ x a)
                  (cond
                   ((variablep x) (cdr (assoc x a)))
                   ((fquotep x) (cadr x))
                   ((eq (car x) 'IF)
                     (if (ev$ (cadr x) a)
                         (ev$ (caddr x) a)
                         (ev$ (cadddr x) a)))
                   (t (apply$ (car x)
                               (ev$-list (cdr x) a))))))
```

This is stored as several :rewrite rules.

Rules about ev\$-list

Stored as a :definition rule.

Rules about apply\$

(defthm beta-reduction (equal (apply\$ (list 'LAMBDA vars body) args) (ev\$ body (pairlis\$ vars args))))

Rules about User-Defined f

We've explained apply\$ for lambda-expressions and primitives.

But what about user-defined functions?

If f is a user-defined function,

- (apply\$ f args)
- = (apply\$-nonprim f args),

where apply\$-nonprim is undefined (a defstub).

How Do We Prove Anything?

So how do you prove

(equal (sumlist '(1 2 3) 'sq) 14)

How Do We Prove Anything?

So how do you prove

Note that this solves the LOCAL problem because now the theorem mentions the function sq.

How Do We Prove Anything?

So how do you prove

But we can't write \forall so we use defun-sk to introduce a Applicablep-SQ to express that quantified hypothesis.

How Do We Prove Anything? So how do you prove (implies (Applicablep-SQ)

(equal (sumlist '(1 2 3) 'sq) 14))

But we can't write \forall so we use defun-sk to introduce a Applicablep-SQ to express that quantified hypothesis.

But we can't write \forall so we use defun-sk to introduce a Applicablep-sq to express that quantified hypothesis.

(Applicablep SQ) is just an abbreviation for (Applicablep-SQ).

Rules about User-Defined f

You must use (make-applicable f) to tell apply\$ about f.

If f is not manageable, (make-applicable f) causes an error.

Otherwise, it executes a defun-sk to introduce Applicablep-f.

Then make-applicable proves rules about Applicablep-f.

The forms of the defun-sk and the rules depend on whether f is tame.

(make-applicablep ap)

(make-applicablep sumlist)

```
(defthm apply$-SUMLIST
  (and
```

```
(implies (force (Applicablep-SUMLIST))
      (equal (f-classes 'SUMLIST) '(NIL :FN)))
```

Defun-sk for Applicablep-SUMLIST

... From Which We Can Prove

(defthm apply\$-SUMLIST
 (and

(implies (force (Applicablep-SUMLIST))
 (equal (f-classes 'SUMLIST) '(NIL :FN)))

```
Because f-classes-nonprim and
apply$-nonprim are undefined, it is
impossible to evaluate, prove, or disprove
(Applicablep-SUMLIST).
```

Vacuity

Can we be sure that there is *some way* to define f-classes-nonprim and apply\$-nonprim so that

```
 \begin{bmatrix} \forall \ args: \\ (f-classes-nonprim 'SUMLIST) = '(NIL :FN) \\ \land \\ ((tamep-functionp (cadr \ args)) \\ \rightarrow \\ (apply$-nonprim 'SUMLIST \ args) \\ = \\ (sumlist (car \ args) \\ (cadr \ args))) \end{bmatrix}
```

More Precisely

Given any collection of non-erroneous make-applicable events can we define f-classes-nonprim and apply\$-nonprim so that all the Applicablep-f hypotheses are true?

This is the subject of Part 3.