
Adding APPLY to ACL2
(Part 3)

Matt Kaufmann
J Strother Moore

Department of Computer Science
University of Texas at Austin

January, 2016

1

Rules about User-Defined f

We’ve explained apply$ for

lambda-expressions and primitives.

But what about user-defined functions?

If f is a user-defined function,

(apply$ f args)

= (apply$-nonprim f args),

where apply$-nonprim is undefined (a

defstub).

2

How Do We Prove Anything?

So how do you prove

(equal (sumlist ’(1 2 3) ’sq)

14)

3

How Do We Prove Anything?

So how do you prove

(implies [∀ args : (apply$ ’sq args) = (sq (car args))]

(equal (sumlist ’(1 2 3) ’sq)

14))

4

How Do We Prove Anything?

So how do you prove

(implies [∀ args : (apply$ ’sq args) = (sq (car args))]

(equal (sumlist ’(1 2 3) ’sq)

14))

Note that this solves the LOCAL problem

because now the theorem mentions the

function sq.

5

How Do We Prove Anything?

So how do you prove

(implies [∀ args : (apply$ ’sq args) = (sq (car args))]

(equal (sumlist ’(1 2 3) ’sq)

14))

But we can’t write ∀ so we use defun-sk

to introduce a Applicablep-SQ to express

that quantified hypothesis.

6

How Do We Prove Anything?

So how do you prove

(implies (Applicablep-SQ)

(equal (sumlist ’(1 2 3) ’sq)

14))

But we can’t write ∀ so we use defun-sk

to introduce a Applicablep-SQ to express

that quantified hypothesis.

7

How Do We Prove Anything?

So how do you prove

(implies (Applicablep SQ)

(equal (sumlist ’(1 2 3) ’sq)

14))

But we can’t write ∀ so we use defun-sk

to introduce a Applicablep-sq to express

that quantified hypothesis.

(Applicablep SQ) is just an abbreviation

for (Applicablep-SQ).

8

Background

The (Applicablep-f) hypotheses cannot

be proved because they concern undefined

functions, e.g., f-classes-nonprim and

apply$-nonprim.

Can we produce a model of these

undefined functions that makes the

hypotheses provable?

9

For a Mapping Function
(make-applicable SUMLIST)

=⇒

(defun-sk Applicablep-SUMLIST ()

(forall (x)

(and (equal (f-classes-nonprim ’SUMLIST) ’(NIL :FN))

(implies (tamep-functionp (cadr x))

(equal (apply$-nonprim ’SUMLIST x)

(sumlist (car x) (cadr x)))))))

(Applicablep-SUMLIST)

↔ [(f-classes ’SUMLIST)= ’(NIL :FN)

∧ (∀ x :

(tamep-functionp (cadr x))

→ (apply$ ’SUMLIST x)

=(SUMLIST (car x)(cadr x)))]

10

Immediate Goal

For a given chronology (sequence of user

events) define the stubs of the apply book,

• f-classes-nonprim

• apply$-nonprim

in a way that makes all the

Applicablep-f hypotheses of the

chronology provably true.

11

Eventual Goal

Prove (by hand) that we can always model

any admissible chronology.

This requires that we precisely describe

how to do it.

Remember: We don’t actually have to

implement this process. We just have to be

sure we could and that it would produce a

certifiable file!

12

In this talk we’ll focus on a few

representative functions.

ap ; Ordinary

rev ; (independent of apply$)

flatten

sq

fact

gcd

13

collect ; Mapping Fns

sumlist ; (having at least one

sumlist-with-params ; :FN or :EXPR formal)

filter

all

collect-on

collect-tips

apply$2

russell

foldr

collect-from-to

collect*

collect2

14

collect-rev ; Tame Instances

; (uses mapping functions

; but with (QUOTEd)

; tame args)

15

Examples

(defun$ rev (x) ; Ordinary

(if (consp x)

(ap (rev (cdr x)) (cons (car x) nil))

nil))

(defun$ collect (lst fn) ; Mapping fn

(cond ((endp lst) nil)

(t (cons (apply$ fn (list (car lst)))

(collect (cdr lst) fn)))))

(defun$ collect-rev (lst) ; Tame Instance

(collect lst ’REV))

16

More Precise Immediate Goal

Given certified book "chronology":

(in-package "ACL2")

(include-book "apply")

. . .

(defun rev . . .)

. . .

(defun collect . . .)

. . .

(defun collect-rev . . .)

. . .

(defthm . . .)

. . .

17

create and certify books:

• "apply!"

• "chronology!"

• "applicablep!"

where:

18

"chronology!":

(in-package "ACL2")

(include-book "apply")

. . .

(defun rev . . .)

. . .

(defun collect . . .)

. . .

(defun collect-rev . . .)

. . .

(defthm . . .)

. . .

19

"chronology!":

(in-package "ACL2")

(include-book "apply!")

. . .

(defun rev . . .)

. . .

(defun collect . . .)

. . .

(defun collect-rev . . .)

. . .

(defthm . . .)

. . .

20

"applicablep!":

(in-package "ACL2")

(include-book "chronology!")

(defthm applicable-rev-true

(Applicablep-REV))

. . .

(defthm applicable-collect-true

(Applicablep-COLLECT))

. . .

(defthm applicable-collect-rev-true

(Applicablep-COLLECT-REV))

21

A Thought Experiment

Suppose f1, . . . fn are the user’s functions.

How would we define apply$?

22

A Thought Experiment

Suppose f1, . . . fn are the user’s functions.

How would we define apply$. . . and ev$

and ev$-list (since they’re mutually

recursive)?

But we’ll focus just on apply$.

Since some fi call apply$, we must define

apply$ before f1, . . . , fn.

23

A Thought Experiment
(defun apply$ (fn args)

(cond

((consp fn)

(ev$ (caddr fn) (pairlis$ (cadr fn) args)))

((apply$-primp fn) (apply$-prim fn args))

((eq fn ’f1) (f1 (car args) . . . (cad. . .dr args)))

. . .

((eq fn ’fn) (fn (car args) . . . (cad. . .dr args)))

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

24

A Thought Experiment
(defun apply$ (fn args)

(cond

((consp fn)

(ev$ (caddr fn) (pairlis$ (cadr fn) args)))

((apply$-primp fn) (apply$-prim fn args))

((eq fn ’f1) (f1 (car args) . . . (cad. . .dr args)))

. . .

((eq fn ’fn) (fn (car args) . . . (cad. . .dr args)))

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

25

A Thought Experiment
(defun apply$ (fn args)

(cond

((eq fn ’f1) (f1 (car args) . . . (cad. . .dr args)))

. . .

((eq fn ’fn) (fn (car args) . . . (cad. . .dr args)))

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

26

A Thought Experiment
(defun apply$ (fn args)

(cond

. . .

((eq fn ’COLLECT) (collect (car args) (cadr args)))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

27

A Thought Experiment
(defun apply$ (fn args)

(cond . . .

((eq fn ’COLLECT)

(collect (car args) (cadr args)))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

28

A Thought Experiment
(defun apply$ (fn args)

(cond . . .

((eq fn ’COLLECT)

(collect (car args) (cadr args))) ; Undefined!

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

29

A Thought Experiment
(defun apply$ (fn args)

(cond . . .

((eq fn ’COLLECT)

(collect (car args) (cadr args)))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply$ (car args) (cadr args))

nil))

(t nil)))

(defun collect (lst fn)

(cond ((endp lst) nil)

(t (cons (apply$ fn (list (car lst)))

(collect (cdr lst) fn)))))

30

A Thought Experiment

(mutual-recursion

(defun apply$. . .)

(defun ev$. . .)

(defun ev$-list . . .)

(defun collect . . .) ; all user mapping fns

(defun sumlist . . .)

. . .

(defun foldr . . .)

(defun russell . . .)

. . .)

Lesson 1: We must find a measure that

justifies this clique!

31

A Thought Experiment

But if apply! contains:

(mutual-recursion

(defun apply$. . .)

. . .

(defun collect . . .)

. . .)

we can’t certify chronology! where

chronology contains:

(defun collect (lst fn) ; Error: Name in use!

(cond ((endp lst) nil)

(t (cons (apply$ fn (list (car lst)))

(collect (cdr lst) fn)))))

32

A Thought Experiment

Lesson 2: apply! should use different

names and prove equivalence.

If the user introduces fi then we’ll

introduce fi!.

We call fi! the doppleganger of fi.

(defun collect (lst fn)

(cond ((endp lst) nil)

(t (cons (apply$ fn (list (car lst)))

(collect (cdr lst) fn)))))

33

A Thought Experiment

Lesson 2: apply! should use different

names and prove equivalence.

If the user introduces fi then we’ll

introduce fi!.

We call fi! the doppleganger of fi.

(defun collect! (lst fn)

(cond ((endp lst) nil)

(t (cons (apply! fn (list (car lst)))

(collect! (cdr lst) fn)))))

34

A Thought Experiment
(defun apply! (fn args)

(cond . . .

((eq fn ’REV) (rev! (car args)))

((eq fn ’COLLECT) (collect! (car args) (cadr args)))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply! (car args) (cadr args))

nil))

(t nil)))

(defun collect! (lst fn)

(cond ((endp lst) nil)

(t (cons (apply! fn (list (car lst)))

(collect! (cdr lst) fn)))))

35

A Thought Experiment
(defun apply! (fn args)

(cond . . .

((eq fn ’REV) (rev! (car args)))

((eq fn ’COLLECT)

(collect! (car args) (cadr args)))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply! (car args) (cadr args))

nil))

(t nil)))

36

A Thought Experiment
(defun apply! (fn args)

(cond . . .

((eq fn ’REV) (rev! (car args)))

((eq fn ’COLLECT)

(if (tamep-functionp (cadr args))

(collect! (car args) (cadr args))

nil))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply! (car args) (cadr args))

nil))

(t nil)))

Lesson 3: Check tameness!
37

A Thought Experiment
(defun apply! (fn args)

(cond . . .

((eq fn ’REV) (rev! (car args)))

((eq fn ’COLLECT)

(if (tamep-functionp (cadr args))

(collect! (car args) (cadr args))

nil))

. . .

((eq fn ’APPLY$)

(if (tamep-functionp (car args))

(apply! (car args) (cadr args))

nil))

(t nil)))

What about collect-rev?
38

A Thought Experiment

(defun$ rev (x) ; Ordinary

(if (consp x)

(ap (rev (cdr x)) (cons (car x) nil))

nil))

(defun$ collect (lst fn) ; Mapping fn

(cond ((endp lst) nil)

(t (cons (apply$ fn (list (car lst)))

(collect (cdr lst) fn)))))

(defun$ collect-rev (lst) ; Tame Instance

(collect lst ’REV))

39

A Thought Experiment

(defun rev! (x) ; Ordinary

(if (consp x)

(ap! (rev! (cdr x)) (cons (car x) nil))

nil))

(defun collect! (lst fn) ; Mapping fn

(cond ((endp lst) nil)

(t (cons (apply! fn (list (car lst)))

(collect! (cdr lst) fn)))))

(defun collect-rev! (lst) ; Tame Instance

(cond ((endp lst) nil)

(t (cons (rev! (car lst))

(collect-rev! (cdr lst))))))

40

A Thought Experiment

(defun rev! (x) ; Ordinary

(if (consp x)

(ap! (rev! (cdr x)) (cons (car x) nil))

nil))

(defun collect! (lst fn) ; Mapping fn

(cond ((endp lst) nil)

(t (cons (apply! fn (list (car lst)))

(collect! (cdr lst) fn)))))

(defun collect-rev! (lst) ; Ordinary

(cond ((endp lst) nil)

(t (cons (rev! (car lst))

(collect-rev! (cdr lst))))))

41

A Thought Experiment

Lesson 4: The dopplegangers of tame

instances are ordinary and should be

treated as such in apply!.

42

The Construction

1. Include the book apply-prim.lisp to define

apply$-primp and apply$-prim.

2. Define f-classes-nonprim to return

the f-classes of all non-primitive functions

fi as computed by chronology.lisp.

43

(defun f-classes-nonprim (fn)

(case fn

. . .

(REV t)

. . .

(COLLECT ’(NIL :FN))

. . .

(RUSSELL ’(FN :NIL))

. . .))

3. Define f-classes and the tamep clique

as in apply.lisp.

44

4. Partition the user’s functions into three

groups:

• ordinary functions – those independent

of apply$, ev$, and ev$-list.

• mapping functions – those having at

least one :FN or :EXPR argument

• tame instances – functions defined by

calling mapping functions on quoted

tame functions and expressions

45

5. Define dopplegangers for all ordinary

functions and for all tame instances.

6. Define the dopplegangers of apply$,

ev$, ev$-list and all mapping functions

in a mutually recursive clique.

7. Define apply$-nonprim to be the part

of apply! that handles the user’s

functions (looking for ’fi and calling fi!).

46

(defun apply$-nonprim (fn args)

(case fn

. . .

(REV (rev! (car args)))

. . .

(COLLECT

(if (tamep-functionp (cadr args))

(collect! (car args) (cadr args))

nil))

. . .

(COLLECT-REV

(collect-rev! (car args) (cadr args)))

. . .))

47

8. Copy down the rest of apply.lisp.

9. Copy down all of the user’s functions

(ordinary, mapping, and tame instances)

exactly as they are defined in

chronology.lisp.

10. Prove that the dopplegangers of apply$,

ev$, ev$-list and all the mapping

functions are equal to their

correspondents.

48

(defthm doppleganger-equiv-for-mapping-fns

(and (equal (apply! fn args)

(apply$ fn args))

(equal (ev! x a)

(ev$ x a))

. . .

(equal (collect! lst fn)

(collect lst fn))

. . .

(equal (russell! fn lst)

(russell fn lst))

. . .))

49

11. Prove that the dopplegangers of the

ordinary functions and tame instances are

equal to their correspondents.

(defthm ap!-is-ap

(equal (ap! x y) (ap x y)))

(defthm rev!-is-rev

(equal (rev! x) (rev x)))

. . .

(defthm collect-rev!-is-collect-rev

(equal (collect-rev! lst) (collect-rev lst)))

50

The Challenge

How do you invent a measure to explain a

mutually recursive clique containing:

• apply!

• ev!

• collect!

• foldr!

• . . .

51

My Current Answer

A lexicographic combination of:

1. apply$, ev$, and ev$-list have

measure 0; all user mapping fns have

measure

(if (tamep-functionp fn) 0 1)

52

2. combined sizes of fn and the :FN and/or

:EXPR arguments

3. the mapping function’s “native” measure

4. maximal distance to apply$

53

Examples

(apply$2 fn x y) 〈1, *, *, *〉

⇓ ≻

(apply$ fn (list x y)) 〈0, *, *, *〉

(apply$ ’collect args) 〈0, 1+|(cadr args)|, *, *〉

⇓ ≻

(collect (car args) 〈0, |(cadr args)|, *, *〉

(cadr args))

54

(collect lst fn) 〈0, |fn|, |lst|, *〉

⇓ ≻

(collect (cdr lst) fn) 〈0, |fn|, |(cdr lst)|, *〉

(collect-tips x fn) 〈0, |fn|, |x|, 1〉

⇓ ≻

(apply$ fn (list x)) 〈0, |fn|, 0, 0〉

55

Successes

This lexicographic measure justifies

collect apply$2

collect2 apply$2x

collect* apply$2xx

collect-on russell

collect-tips recur-by-collect

collect-from-to prow

sumlist prow*

sumlist-with-params

filter

all

foldr

foldl

56

If we find a mapping function that

make-applicable accepts but for which

the above construction fails, we must either

• restrict make-applicable so that it

rejects the mapping function, or

• find a more elaborate construction!

57

If we find a mapping function that

make-applicable accepts but for which

the above construction fails, we must either

• restrict make-applicable so that it

rejects the mapping function, or

• find a more elaborate construction!

An alternative: Prohibit user defined

mapping functions. Just supply the ones

we can justify now and call it done.

58

Other Issues

Make-applicable incorrectly accepts foo

as a tame instance!

(defun foo (x) (apply$ ’foo (list (cons x x))))

Make-applicable should check that the

measure is a bounded ordinal.

Make-applicable should check that the

mapping function is not mutually recursive.

59

Prove that the construction works for all

functions admited by make-applicable!

60

