
Modeling Asynchronous Circuits in ACL2 Using the
Link-Joint Interface

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science

The University of Texas at Austin

April 19, 2016

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 1 / 22

mailto:ckcuong@cs.utexas.edu


Outline

1 Introduction

2 The DE Language

3 The Link-Joint Interface

4 Future Work

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 2 / 22



Outline

1 Introduction

2 The DE Language

3 The Link-Joint Interface

4 Future Work

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 3 / 22



Introduction

Synchronous circuits (Clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (Self-timed circuits): there is no global clock signal
distributed in asynchronous circuits. The communication between
components is performed via local handshake protocols.

Why asynchronous?

Low power consumption.
High operating speed.
Better composability and modularity.
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 4 / 22



Introduction

Synchronous circuits (Clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (Self-timed circuits): there is no global clock signal
distributed in asynchronous circuits. The communication between
components is performed via local handshake protocols.

Why asynchronous?

Low power consumption.
High operating speed.
Better composability and modularity.
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 4 / 22



Introduction

Synchronous circuits (Clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (Self-timed circuits): there is no global clock signal
distributed in asynchronous circuits. The communication between
components is performed via local handshake protocols.

Why asynchronous?

Low power consumption.
High operating speed.
Better composability and modularity.
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 4 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.

The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,
local handshake protocols,
non-deterministic behavior due to uncertain but bounded delays on
wires and gates,
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 5 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,
local handshake protocols,
non-deterministic behavior due to uncertain but bounded delays on
wires and gates,
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 5 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,

local handshake protocols,
non-deterministic behavior due to uncertain but bounded delays on
wires and gates,
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 5 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,
local handshake protocols,

non-deterministic behavior due to uncertain but bounded delays on
wires and gates,
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 5 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,
local handshake protocols,
non-deterministic behavior due to uncertain but bounded delays on
wires and gates,

...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 5 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,
local handshake protocols,
non-deterministic behavior due to uncertain but bounded delays on
wires and gates,
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 5 / 22



Introduction

Formal verification in asynchronous systems is an active research area.

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE language - a hardware description language written in
ACL2 [W. Hunt, 2000].

Developing new approaches for modeling asynchronous systems in
ACL2. Dealing with:

no global clock signal,
local handshake protocols,
non-deterministic behavior due to uncertain but bounded delays on
wires and gates,
...

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 6 / 22



Approach

Developing new approaches for modeling asynchronous systems in ACL2.
Dealing with:

no global clock signal,

⇒ Every state-holding device in the DE primitive database must be
governed by its own clock signal.

local handshake protocols,

⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015] in DE.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 7 / 22



Approach

Developing new approaches for modeling asynchronous systems in ACL2.
Dealing with:

no global clock signal,
⇒ Every state-holding device in the DE primitive database must be
governed by its own clock signal.
local handshake protocols,

⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015] in DE.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 7 / 22



Approach

Developing new approaches for modeling asynchronous systems in ACL2.
Dealing with:

no global clock signal,
⇒ Every state-holding device in the DE primitive database must be
governed by its own clock signal.
local handshake protocols,
⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015] in DE.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 7 / 22



Outline

1 Introduction

2 The DE Language

3 The Link-Joint Interface

4 Future Work

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 8 / 22



The DE Language

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
current outputs and the next state.

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and inputs.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 9 / 22



The DE Language

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
current outputs and the next state.

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and inputs.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 9 / 22



The DE Language

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
current outputs and the next state.

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and inputs.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 9 / 22



The DE Language

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
current outputs and the next state.

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and inputs.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 9 / 22



The DE Language

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
current outputs and the next state.

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and inputs.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 9 / 22



DE Language Example

(defconst *half-adder*
’((half-adder ;; module name

(a b) ;; module inputs
(sum carry) ;; module outputs
() ;; internal states
;; occurrences

((g0 ;; occurrence name
(sum) ;; occurrence outputs
f-xor ;; a primitive reference
(a b)) ;; occurrence inputs

(g1 (carry) f-and (a b))))))

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 10 / 22



DE Language Example

(defconst *full-adder*
(cons
’(full-adder

(a b c)
(sum carry)
()
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) f-or (carry1 carry2))))

*half-adder*))

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 11 / 22



DE Language Example

(defconst *one-bit-counter*
(cons
’(one-bit-counter

(clk carry-in reset-)
(out carry)
(g0)
((g0 (out) ff (clk sum-reset-))
(g1 (sum carry) half-adder (carry-in out))
(g2 (sum-reset-) f-and (sum reset-))))

*half-adder*))

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 12 / 22



The DE Simulator

The operational semantics for the DE language is given by the DE
simulator, which is composed of two sets of mutually recursive functions.

The mutually recursive functions se and se-occ compute the
outputs of a module being evaluated given its inputs and its current
states.
The mutually recursive functions de and de-occ compute the next
state of a module being evaluated given its inputs and its current
states.

Demo.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 13 / 22



The DE Simulator

The operational semantics for the DE language is given by the DE
simulator, which is composed of two sets of mutually recursive functions.

The mutually recursive functions se and se-occ compute the
outputs of a module being evaluated given its inputs and its current
states.

The mutually recursive functions de and de-occ compute the next
state of a module being evaluated given its inputs and its current
states.

Demo.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 13 / 22



The DE Simulator

The operational semantics for the DE language is given by the DE
simulator, which is composed of two sets of mutually recursive functions.

The mutually recursive functions se and se-occ compute the
outputs of a module being evaluated given its inputs and its current
states.
The mutually recursive functions de and de-occ compute the next
state of a module being evaluated given its inputs and its current
states.

Demo.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 13 / 22



The DE Simulator

The operational semantics for the DE language is given by the DE
simulator, which is composed of two sets of mutually recursive functions.

The mutually recursive functions se and se-occ compute the
outputs of a module being evaluated given its inputs and its current
states.
The mutually recursive functions de and de-occ compute the next
state of a module being evaluated given its inputs and its current
states.

Demo.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 13 / 22



An Example DE Proof

Prove the correctness of a parameterized ripple-carry adder.

(defun ripple-adder (c a b)
(declare (xargs :guard (and (booleanp c)

(boolean-listp a)
(boolean-listp b))))

;; c is a bit, a and b are bit-vectors of some length n;
;; this function returns a bit vector of length n+1.

(if (endp a)
(list c)

(cons (xor c (xor (car a) (car b)))
(ripple-adder (or (and (car a) (car b))

(and (car a) c)
(and (car b) c))

(cdr a)
(cdr b)))))

Demo.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 14 / 22



An Example DE Proof

Prove the correctness of a parameterized ripple-carry adder.

(defun ripple-adder (c a b)
(declare (xargs :guard (and (booleanp c)

(boolean-listp a)
(boolean-listp b))))

;; c is a bit, a and b are bit-vectors of some length n;
;; this function returns a bit vector of length n+1.

(if (endp a)
(list c)

(cons (xor c (xor (car a) (car b)))
(ripple-adder (or (and (car a) (car b))

(and (car a) c)
(and (car b) c))

(cdr a)
(cdr b)))))

Demo.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 14 / 22



Outline

1 Introduction

2 The DE Language

3 The Link-Joint Interface

4 Future Work

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 15 / 22



Link and Joint

The dataflow in self-timed systems can be viewed as a directed graph with
links as edges and joints as nodes [M. Roncken et al., 2015], where:

Links are communication channels, with data flowing in the direction
of the edges representing the links.
Joints are modules that implement flow control and data operations.

Data are stored in links, not in joints. Data flow from one end of the link
to the other end, and are captured in-between.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 16 / 22



Link and Joint

The dataflow in self-timed systems can be viewed as a directed graph with
links as edges and joints as nodes [M. Roncken et al., 2015], where:

Links are communication channels, with data flowing in the direction
of the edges representing the links.
Joints are modules that implement flow control and data operations.

Data are stored in links, not in joints. Data flow from one end of the link
to the other end, and are captured in-between.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 16 / 22



Link and Joint

A link receives fill or drain commands from and reports its full/empty
state to its corresponding joints. When a link receives a fill command, it
changes its state to full. A link will change to the empty state if it receives
a drain command.

A joint receives the full/empty states of its links and issues the fill and
drain commands when the handshake condition is satisfied. In particular,
whenever its incoming links are full and its outgoing links are empty, it will
perform the following three actions in parallel:

hand-over data computed from the incoming links to the
corresponding outgoing links,
make the incoming links empty,
make the outgoing links full.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 17 / 22



Link and Joint

A link receives fill or drain commands from and reports its full/empty
state to its corresponding joints. When a link receives a fill command, it
changes its state to full. A link will change to the empty state if it receives
a drain command.

A joint receives the full/empty states of its links and issues the fill and
drain commands when the handshake condition is satisfied. In particular,
whenever its incoming links are full and its outgoing links are empty, it will
perform the following three actions in parallel:

hand-over data computed from the incoming links to the
corresponding outgoing links,
make the incoming links empty,
make the outgoing links full.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 17 / 22



Link and Joint

A link receives fill or drain commands from and reports its full/empty
state to its corresponding joints. When a link receives a fill command, it
changes its state to full. A link will change to the empty state if it receives
a drain command.

A joint receives the full/empty states of its links and issues the fill and
drain commands when the handshake condition is satisfied. In particular,
whenever its incoming links are full and its outgoing links are empty, it will
perform the following three actions in parallel:

hand-over data computed from the incoming links to the
corresponding outgoing links,
make the incoming links empty,
make the outgoing links full.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 17 / 22



Handshake Protocol Using the Link-Joint Interface

There is a feedback loop from link-state to joint-action and back to
link-state.

Handshake protocols can be established in terms of the link-joint interface.

Demo: Modeling a simple while-loop circuit in an asynchronous manner
using the link-joint interface.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 18 / 22



Handshake Protocol Using the Link-Joint Interface

There is a feedback loop from link-state to joint-action and back to
link-state.

Handshake protocols can be established in terms of the link-joint interface.

Demo: Modeling a simple while-loop circuit in an asynchronous manner
using the link-joint interface.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 18 / 22



Handshake Protocol Using the Link-Joint Interface

There is a feedback loop from link-state to joint-action and back to
link-state.

Handshake protocols can be established in terms of the link-joint interface.

Demo: Modeling a simple while-loop circuit in an asynchronous manner
using the link-joint interface.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 18 / 22



Outline

1 Introduction

2 The DE Language

3 The Link-Joint Interface

4 Future Work

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 19 / 22



Future Work

Develop more efficient decomposition-proof methods in asynchronous
circuits.

Extend the DE system to modeling non-deterministic behavior in
asynchronous circuits.

Implement tools and techniques for building and analyzing asynchronous
circuits in a more automated manner.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 20 / 22



References

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 21 / 22



Thank You!

Cuong Chau (UT Austin) Link-Joint Interface in ACL2 April 19, 2016 22 / 22


	Introduction
	The DE Language
	The Link-Joint Interface
	Future Work

