
Adding APPLY to ACL2 –

Work in Progress

Matt Kaufmann
J Strother Moore

Department of Computer Science
University of Texas at Austin

January, 2016

1



Motivation

Iterative constructs are common in all

programming languages — except ACL2.

∑

x∈′(1 2 3)

x2

(loop for x in ’(1 2 3) sum (sq x))

(sumlist ’(1 2 3) ’sq)

2



But in ACL2. . .

(defun sum-sq (lst)

(if (endp lst)

0

(+ (sq (car lst))

(sum-sq (cdr lst)))))

(sum-sq ’(1 2 3))

3



Now Write These in ACL2

∑

x∈′(1 2 3)

x3

∑

x∈′(1 2 3)

x2 + x

∑

x∈′(1 2 3)

x2 + 2x+ 1

4



Each requires a different ACL2 function,

sum-sq,

sum-cubes,

sum-sq+x,

sum-yet-another-poly.

5



Two Beautiful Things about Iterative

Notation

Succinct: Many different computations can

be described with the same control

structure.

General: Lemmas can be proved about the

control structure independent of the

particulars.

6



∑

x∈(append a b)

γ =
∑

x∈a

γ +
∑

x∈b

γ

7



(sum-sq (append a b))

= (+ (sum-sq a) (sum-sq b))

(sum-cubes (append a b))

= (+ (sum-cubes a) (sum-cubes b))

(sum-sq+x (append a b))

= (+ (sum-sq+x a) (sum-sq+x b))

(sum-yet-another-poly (append a b))

= (+ (sum-yet-another-poly a)

(sum-yet-another-poly b))

8



Goals

Make it possible to define such functions

as:

(defun sumlist (lst fn)

(if (endp lst)

0

(+ (apply fn (list (car lst)))

(sumlist (cdr lst) fn))))

9



to prove and use such lemmas as:

(defthm sumlist-append

(equal (sumlist (append a b) fn)

(+ (sumlist a fn)

(sumlist b fn))))

10



and to reason about and execute such

terms as

(sumlist lst ’sq)

(sumlist lst ’cube)

(sumlist lst ’(lambda (x) (+ (* x x) x)))

(sumlist lst ’(lambda (x) (+ (* x x) (* 2 x) 1)))

11


