
April, 2016

Analysis of x86 Application and System Programs
via Machine-Code Verification

Department of Computer Science
The University of Texas at Austin

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann

<shigoel,hunt,kaufmann>@cs.utexas.edu

/27

Project Overview

2

Goal: Build robust tools to increase software reliability

‣ Verify critical properties of application and system programs

‣ Correctness with respect to behavior, security, & resource usage

Plan of Action:

1. Build a formal, executable x86 ISA model using ACL2

2. Develop a machine-code analysis framework based on this model

3. Employ this framework to verify application and system programs

/27

Highlights of this Talk

3

Unified Model
- Simulator: Executable file readers & loaders; GDB-like mode for

dynamic instrumentation
- Reasoning Framework: ACL2 libraries to reason about x86 machine

code

Compile-to and Build-to Specification
A formal, executable x86 ISA model
- Specification of low-level ISA features
- Handles non-determinism

User Manual
- Documentation

Open Source
- Available online

/274

Outline

๏ Overview

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

/27

Model Development

5

Interpreter-Style Operational Semantics

➡ Instruction Semantic Functions: describe the effect of each
instruction

➡ Step Function: fetches, decodes, and executes one instruction

➡ x86 State: specifies the components of the ISA (registers, flags,
memory)

/27

Vol. 1 3-5

BASIC EXECUTION ENVIRONMENT

• Debug registers — Debug registers expand to 64 bits. See Chapter 17, “Debug, Branch Profile, TSC, and
Quality of Service,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

• Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

3.3 MEMORY ORGANIZATION
The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 − 1 (64 GBytes) if the processor does not support Intel

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Source: Intel Manuals

64-bit sub-mode of Intel’s IA-32e mode

6

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment
descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code
Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate
IST

XCR0 (XFEM)

Vol. 2C B-1

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes
the IA-32 architecture’s machine instruction format. The remaining sections show the formats and encoding of
general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction
formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of
the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in
Figure B-1. Each instruction consists of:
• an opcode
• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base

(SIB) byte (if required)
• a displacement and an immediate data field (if required)

The following sections discuss this format.

B.1.1 Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional, except when F2H, F3H
and 66H are used in new instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, for more information on legacy prefixes.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T

Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2,
Grp 3, Grp 4

NOTE:

* The Reg Field may be used as an
opcode extension field (TTT) and as a
way to encode diagnostic registers
(eee).

1, 2, or 3 Byte Opcodes (T = Opcode

/27

Handling Non-Determinism

7

• Some examples of non-determinism in the ISA:

- RFLAGS are undefined after the execution of some instructions.

- Instructions like RDRAND are inherently non-deterministic.

• The x86 state contains an oracle field that is consulted whenever the
result of a non-deterministic operation is required.

- Every value retrieved from the oracle is unique and indeterminate.

- This allows accounting for all possible behaviors during reasoning.

/27

All AMD manuals: ~3000 pages

Obtaining the x86 ISA Specification

8

~3400 pages

__asm__ volatile
("stc\n\t" // Set CF.
 "mov $0, %%eax\n\t" // Set EAX = 0.
 "mov $0, %%ebx\n\t" // Set EBX = 0.
 "mov $0, %%ecx\n\t" // Set ECX = 0.
 "mov %4, %%ecx\n\t" // Set CL = rotate_by.
 "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
 "mov %2, %%eax\n\t" // Set EAX = num.
 "rcl %%cl, %%al\n\t" // Rotate AL by CL.
 "cmovb %%edx, %%ebx\n\t" // Set EBX = old_cf if CF = 1.
 // Otherwise, EBX = 0.
 "mov %%eax, %0\n\t" // Set res = EAX.
 "mov %%ebx, %1\n\t" // Set cf = EBX.

 : "=g"(res), "=g"(cf)
 : "g"(num), "g"(old_cf), "g"(rotate_by)
 : "rax", "rbx", "rcx", "rdx");

Running tests on x86 machines

/27

Model Validation

9

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

/27

Optimizing the Model for Efficiency

10

Optimized for
reasoning
efficiency

Optimized for
execution
efficiency

Layered modeling approach mitigates the trade-off between
reasoning and execution efficiency. [ACL2’13]

This layer was introduced using an ACL2 feature called Abstract
Stobj, which was developed in response to this need for
optimizing the x86 model.

~330K to 3.3 million
instructions/second

Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz

/27

Focus on Usability

11

• Two examples that illustrate our focus on user experience:

1. Modes of operation to balance verification/simulation effort and utility

2. Program debugging tools to be used during simulation

/27

Focus on Usability #1: Modes of Operation

12

Programmer-Level Mode System-Level Mode

Verification of application programs Verification of system programs

Virtual memory address space
(264 bytes)

Physical memory address space
 (252 bytes)

Assumptions about correctness of OS
operations

No assumptions about OS operations

~3.3 million instructions/second ~330,000 instructions/second
(with 1G pages)

Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz

/27

Focus on Usability #2: Tools for the Simulator

13

• Executable file readers and loaders written in ACL2 that support both
Mach-O and ELF binary formats.

- The input to the x86 model is the program binary

- These tools use the meta-data in these binaries to automatically
initialize the machine state

• A GDB-like mode is used for the dynamic instrumentation of machine-
code.

- Useful for debugging both the programs and the x86 specification

/27

Current Status: x86 ISA Model

14

• The x86 ISA model supports 400+ instructions

‣ Can execute almost all user-level programs emitted by GCC/LLVM
‣ Successfully co-simulated a contemporary SAT solver on our model
‣ Successfully simulated a supervisor-mode zero-copy program

• IA-32e paging for all page configurations (4K, 2M, 1G)

• Segment-based addressing

• Lines of ACL2: ~85,000 (not including blank lines)

/2715

Outline

๏ Overview

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

/27

Current Status: Building Lemma Libraries

16

add %edi, %eax

1. read instruction from mem

2. read operands

3. write sum to eax

4. write new value to flags

5. write new value to pc

• General libraries include lemmas
about reads from and writes to the
machine state, along with the
interactions between these
operations.

• We include these libraries when we
verify programs.

• General library construction and program verification are
interdependent processes.

- Discover the kinds of lemmas needed while verifying a program

- See a general pattern

- Automate the generation and proof of these lemmas

/2717

Outline

๏ Overview

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

/27

Application Program #1: popcount

18

Automatically verify snippets of straight-line machine code using bit-
blasting [VSTTE’13]

55 push %rbp
48 89 e5 mov %rsp,%rbp
89 7d fc mov %edi,-0x4(%rbp)
8b 7d fc mov -0x4(%rbp),%edi
8b 45 fc mov -0x4(%rbp),%eax
c1 e8 01 shr $0x1,%eax
25 55 55 55 55 and $0x55555555,%eax
29 c7 sub %eax,%edi
89 7d fc mov %edi,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 f8 add %edi,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
8b 7d fc mov -0x4(%rbp),%edi
c1 ef 04 shr $0x4,%edi
01 f8 add %edi,%eax
25 0f 0f 0f 0f and $0xf0f0f0f,%eax
69 c0 01 01 01 01 imul $0x1010101,%eax,%eax
c1 e8 18 shr $0x18,%eax
89 45 fc mov %eax,-0x4(%rbp)
8b 45 fc mov -0x4(%rbp),%eax
5d pop %rbp
c3 retq

Functional Correctness:
RAX = popcount(v)

specification function

popcount(v):

if (v <= 0) then
 return 0
else
 lsb := v & 1
 v := v >> 1
 return (lsb + popcount(v))
endif

int popcount_32 (unsigned int v)
{
 // From Sean Anderson’s Bit-Twiddling Hacks
 v = v - ((v >> 1) & 0x55555555);
 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
 v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
 return(v);
}

/27

Application Program #2: word-count

19

The word-count program reads input from the stdin using read system
calls. System calls are non-deterministic for application programs.
[FMCAD’14]

Resource Usage: Irrespective of the input, program uses a fixed amount
of memory.

Security: Program does not modify unintended regions of memory.

Functional Correctness: Values computed by specification functions on
standard input are found in the expected memory locations of the final x86
state.

/2720

System Program: zero-copy

xl0

Virtual
Memory

xl1

xp

Physical
Memory

Specification:
Copy data x from virtual memory location l0 to
disjoint virtual memory location l1.

Verification Objective:
After a successful copy, l0 and l1 contain x.

Implementation:
Include the copy-on-write technique: l0 and l1
can be mapped to the same physical memory
location p.

‣ Modifications to address mapping

/27

Address Translations: IA-32e Paging (1G page)

CR3

PML4E

PDPTE

Physical
Memory

PML4 Dir. Ptr. Offset

Linear Address

Physical Addr.

1G Page

a accessed flag d dirty flag

a

a

d

/2722

For simplicity, marking of x86 paging structures during traversal was turned
off, i.e., no accessed and dirty bit updates were allowed.

We are currently re-doing this proof to account for updates to accessed and
dirty bits.

Functional Correctness: implementation of a zero-copy program meets
the specification of a simple copy operation.

System Program: zero-copy

/2723

Outline

๏ Motivation

๏ Project Description

➡ [1] Developing an x86 ISA Model

➡ [2] Building a Machine-Code Analysis Framework

➡ [3] Verifying Application and System Programs

๏ Future Work & Conclusion

/27

Contributions

24

A new tool
‣ General-purpose analysis framework for x86 machine-code
‣ Accurate x86 ISA reference

Reasoning strategies
‣ Insight into low-level code verification in general
‣ Build effective lemma libraries

Perform program verification cognizant of low-level ISA features
‣ E.g., properties of x86 memory-management data structures

Foundation for future research
‣ Resource usage guarantees, information-flow analysis, etc.

/27

Long-Term Goals

25

• Run a 64-bit kernel on our x86 ISA model
- This involves identifying and implementing relevant instructions, call

gates, supporting task management, etc.

• Identify and prove critical invariants in kernel code
- This includes proving the correctness of context switches, privilege

escalations, etc.

• Add multiprocessor support to the x86 ISA model

/27

Accessing Source Code + Documentation

26

The x86isa project is available under BSD 3-Clause
license as a part of the ACL2 Community Books project.

Go to https://github.com/acl2/acl2/
and see books/projects/x86isa/README for details.

www.cs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2____X86ISA

Also, documentation and user’s manual is
available online at

https://github.com/acl2/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

/27

Highlights of this Talk

27

Unified Model
- Simulator: Executable file readers & loaders; GDB-like mode for

dynamic instrumentation
- Reasoning Framework: ACL2 libraries to reason about x86 machine

code

Compile-to and Build-to Specification
A formal, executable x86 ISA model
- Specification of low-level ISA features
- Handles non-determinism

User Manual
- Documentation

Open Source
- Available online

