Analysis of x86 Application and System Programs
via Machine-Code Verification

Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann

<shigoel,hunt, kaufmann>@cs.utexas.edu

Department of Computer Science
The University of Texas at Austin

April, 2016

Project Overview

Goal: Build robust tools to increase software reliability
» Verify critical properties of application and system programs

» Correctness with respect to behavior, security, & resource usage

Plan of Action:
1. Build a formal, executable x86 ISA model using ACL2
2. Develop a machine-code analysis framework based on this model

3. Employ this framework to verify application and system programs

-
ACL2

2 /27

Highlights of this Talk

Compile-to and Build-to Specification

A formal, executable x86 ISA model

- Specification of low-level ISA features
- Handles non-determinism

Unified Model

- Simulator: Executable file readers & loaders; GDB-like mode for
dynamic instrumentation

- Reasoning Framework: ACL2 libraries to reason about x86 machine
code

User Manual
- Documentation

Open Source
- Available online

3 /27

Outline

o Overview

e Project Description
= [1] Developing an x86 ISA Model
= [2] Building a Machine-Code Analysis Framework
= [3] Verifying Application and System Programs

o Future Work & Conclusion

4 /27

Model Development

Interpreter-Style Operational Semantics

= x86 State: specifies the components of the ISA (registers, flags,
memory)

= Instruction Semantic Functions: describe the effect of each
instruction

= Step Function: fetches, decodes, and executes one instruction

5 /27

64-bit sub-mode of Intel’s IA-32e mode

Basic Program Execution Registers Address Space RFLAGS
2764 -1 _ Physica Iiddress > Code, Data or Stack
Sixteen 64-bit General-Purpose Registers Control Register Linear Address Segment (Base =0)
Registers CR8 - Task-State
CR4 Segment Selector Segment (TSS)
CR3 it >
Six 16-bi 85? [Register |
ix 16-bit .
h Segment Registers
Registers : CRO Global Descriptor
Task Reglster Table (GDT)
- .
| 64-bits | RFLAGS Register
1 | Interrupt Handler
| 64-bits | RIP (Instruction Pointer Regig 76543210 76543210 76543210 — NULL - "1 Code |
Legacy Prefixes REX Prefixes TTTTTTTT |TTTTTTTT |TTTTTTTT | I_ Stack
FPU Registers Grp 1, Grp 2, (optional) |
Grp 3, Grp 4 1, 2, or 3 Byte Opcodes (T = Opcode |
Eight 80-bit Floating-Po P P yletp (T=0p L intem Hander
Registers Data Regis || Code
—|— Current TSS
|| o Stack
- — 76 53 20 76 53 20 o
| 16 bits_| ontrol Red
“ 4 Mod Reg* R/M |Scale Index Base | d32|16|8|None d32]16|8|None ST
Status Regil btor Exception Handler
AN / AN / .) ;l
Tag Registe NULL - — | Code |
ModR/M Byte SIB Byte Address Displacement Immediate Data :l v E Stack
[] Opcode Reg N ~ (4,2, 1 Bytes or None) (4,2,1 Bytes or None) '
I 64 bits | FPU Instrug . o
: Register and/or Address NQTE:) Protected Procedure
| 64 bits | FPUData (G Mode Specifier _ Ce - - o Cods
MMX Redist * The Reg Field may be used as an NULL - — » Sack
egisters opcode extension field (TTT) and as a || >
Eiaht 64-bit ' way to encode diagnostic registers
Rgegisters MMX Registers (eee)_ | inear Address
hter | Directory | Table |Offset |
XMM Registers Figure B-1. General Machine Instruction Format _ | PageDir. | PageTable | Page
. . L Physical
Slx'gaeegri\slgg bit XMM Registers L PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>
| 32-bits | MXCSR Register 0 This page mapping example is for 4-KByte pages

*Physical Address

and 40-bit physical address size.

Figure 3-2. 64-Bit Mode Execution Environment

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Source: Intel Manuals

6 /27

Handling Non-Determinism

- Some examples of non-determinism in the ISA:
- RFLAGS are undefined after the execution of some instructions.

- Instructions like RDRAND are inherently non-deterministic.

- The x86 state contains an oracle field that is consulted whenever the
result of a non-deterministic operation is required.

- Every value retrieved from the oracle is unique and indeterminate.

- This allows accounting for all possible behaviors during reasoning.

7 /27

Obtaining the x86 ISA Specification

AMDG64 Technology
Intel® 64 and IA-32 Architectures
Software Developer's Manual .
P AMDG64 Architecture
Combined Volumes: y
1, 2A, 2B, 2C, 3A, 3B and 3C Programmer s Manual
__asm__ volatile
("stc\n\t" // Set CF.
g??mémw“W*WW“ﬂ“Wm "mov $0, %%eax\n\t" // Set EAX = 0.
veloper's Manual: Basic Architecture, ||
e g MOV $0, %ebxAn\t! /) set EBX - 0.
e "mov $0, %%ecx\n\t" // Set ECX = @.
"mov %4, %%kecx\n\t" // Set CL = rotate by.
.. "mov %3, %%edx\n\t" // Set EDX = old_cf = 1.
"mov %2, %%eax\n\t" // Set EAX = num.
"rcl %%cl, %%al\n\t" // Rotate AL by CL.
"cmovb %%edx, %%ebx\n\t" // Set EBX = old cf if CF = 1.
// Otherwise, EBX = 0.
"mov %%eax, %O\n\t" // Set res = EAX.
"mov %%ebx, %1\n\t" // Set cf = EBX.
ll=glI(reS)’ ll=gll(cf)
"g"(num), "g"(old_cf), "g"(rotate by)
”raX”, ”rbX”, ”rCX”, ”rdX”);

Running tests on x86 machines
8 /27

Model Validation

How can we know that our model faithfully represents the x86 ISA?

Validate the model to increase trust in the applicability of formal analysis.

.C
GCC/LLVM
Implement
Program No —» missing
: 115 121§§ Opcodes opcodes
————— | Implemented? \
Yes
v

Binary Program

Co-simulations

State-by-State
ACL2 printing 1 GDB scripts,
functiony D'ff \ Pin
x86 ISA model in ACL2 1100

Instruction Semantic
Functions

Fetch, Decode, and Execute
Function

x86
state

Loader in ACL2

9 /27

Optimizing the Model for Efficiency

Layered modeling approach mitigates the trade-off between
reasoning and execution efficiency. [Ac1.2°13]

x86 interpreter

A Optimized for
supports reasoning
efficiency
Abstract Processor State
de optimized for -0 t6 3.3 million
| | execution ’

.- instructions/second
Concrete Processor State eff1c1ency /

This layer was introduced using an ACL2 feature called Abstract
Stobj, which was developed in response to this need for

optimizing the x86 model.

10/27
Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz /

Focus on Usability

- Two examples that illustrate our focus on user experience:
1. Modes of operation to balance verification/simulation effort and utility

2. Program debugging tools to be used during simulation

11/27

Focus on Usability #1: Modes of Operation

Programmer-Level Mode System-Level Mode

Verification of application programs Verification of system programs
Virtual memory address space Physical memory address space
(2%4bytes) (2°2 bytes)

Assumptions about correctness of OS

. No assumptions about OS operations
operations

~330,000 instructions/second

~3.3 million instructions/second (with 1G pages)

12/27
Simulation speed measured on an Intel Xeon E31280 CPU @ 3.50GHz /

Focus on Usability #2: Tools for the Simulator

- Executable file readers and loaders written in ACL2 that support both
Mach-0O and ELF binary formats.

- The input to the x86 model is the program binary

- These tools use the meta-data in these binaries to automatically
initialize the machine state

- A GDB-like mode is used for the dynamic instrumentation of machine-
code.

- Useful for debugging both the programs and the x86 specification

13/27

Current Status: x86 ISA Model

The x86 ISA model supports 400+ instructions

» Can execute almost all user-level programs emitted by GCC/LLVM
» Successfully co-simulated a contemporary SAT solver on our model
» Successfully simulated a supervisor-mode zero-copy program

IA-32e paging for all page configurations (4K, 2M, 1G)
Segment-based addressing

Lines of ACL2: ~85,000 (not including blank lines)

14/27

Outline

o Overview

e Project Description
= [1] Developing an x86 ISA Model
= [2] Building a Machine-Code Analysis Framework
= [3] Verifying Application and System Programs

o Future Work & Conclusion

15/27

Current Status: Building Lemma Libraries

- General libraries include lemmas
about reads from and writes to the
machine state, along with the)
interactions between these

operations. 3.

- We include these libraries when we
verify programs. :

4,

add %edi, %eax

. read instruction from mem

. read operands

write sum to eax

write new value to flags

. write new value to pc

- General library construction and program verification are

interdependent processes.

- Discover the kinds of lemmas needed while verifying a program

- See a general pattern

- Automate the generation and proof of these lemmas

16/27

Outline

o Overview

e Project Description
= [1] Developing an x86 ISA Model
= [2] Building a Machine-Code Analysis Framework
= [3] Verifying Application and System Programs

o Future Work & Conclusion

17/27

Application Program #1: popcount

Automatically verify snippets of straight-line machine code using bit-
blasting [vsTTE 13]

int popcount 32 (unsigned int v)

{

// From Sean Anderson’s Bit-Twiddling Hacks

\Y
\Y
\Y

v - ((v > 1) & 8x55555555);
(v & ©x33333333) + ((v >> 2) & 0x33333333);
((v + (v > 4) & OxFOFOFOF) * 0x1010101) >> 24;

Functional Correctness:
RAX = popcount(v)

specification function

return(v);

b
8b 45 fc mov -0x4(%rbp), %keax
25 33 33 33 33 and $0x33333333,%eax
8b 7d fc mov -0x4(%rbp), %edi
cl ef 02 shr $0x2,%edi
81 e7 33 33 33 33 and $0x33333333,%edi
01 £8 add %edi , %eax
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
8b 7d fc mov -0x4(%rbp), %edi
cl ef 04 shr $0x4 , %edi
01 £8 add %edi, %eax
25 0f of of of and $0xfOfOf0of , %eax
69 cO0 01 01 01 01 imul $0x1010101, %eax , %eax
cl e8 18 shr $0x18, %eax
89 45 fc mov %eax, -0x4(%rbp)
8b 45 fc mov -0x4(%rbp), %keax
5d pop %rbp
c3 retq

popcount(v):

if (v <= 0) then
return ©

else
lsb :(= v &1
V = v >> 1

return (lsb + popcount(v))
endif

18/27

Application Program #2: word-count

The word-count program reads input from the stdin using read system
calls. System calls are non-deterministic for application programs.

Functional Correctness: Values computed by specification functions on
standard input are found in the expected memory locations of the final x86
state.

Resource Usage: Irrespective of the input, program uses a fixed amount
of memory.

Security: Program does not modify unintended regions of memory.

19/27

System Program: zero-copy

Specification:
Copy data x from virtual memory location 10 to
disjoint virtual memory location L1.

Verification Objective:
After a successful copy, 1@ and 11 contain x.

Implementation:
Include the copy-on-write technique: 10 and 11
can be mapped to the same physical memory
location p.

» Modifications to address mapping

Virtual
Memory

Physical
Memory

20/27

Address Translations: IA-32e Paging (1G page)

Linear Address

PML4

Dir. Ptr.

Offset

—

PDPTE @ d

1G Page

— PMI4E Q

CR3

Physical
Memory

» Physical Addr.

a accessed flag d dirty flag

System Program: zero-copy

Functional Correctness: implementation of a zero-copy program meets
the specification of a simple copy operation.

For simplicity, marking of x86 paging structures during traversal was turned
off, i.e., no accessed and dirty bit updates were allowed.

We are currently re-doing this proof to account for updates to accessed and
dirty bits.

22/27

Outline

» Motivation

e Project Description
= [1] Developing an x86 ISA Model
= [2] Building a Machine-Code Analysis Framework
= [3] Verifying Application and System Programs

» Future Work & Conclusion

23/27

Contributions

A new tool
» General-purpose analysis framework for x86 machine-code
» Accurate x86 ISA reference

Perform program verification cognizant of low-level ISA features
» E.g., properties of x86 memory-management data structures

Reasoning strategies
» Insight into low-level code verification in general
» Build effective lemma libraries

Foundation for future research
» Resource usage guarantees, information-flow analysis, etc.

24/27

Long-Term Goals

V P
- Run a 64-bit d FreeBSD, kernel on our x86 ISA model
- This involves identifying and implementing relevant instructions, call
gates, supporting task management, etc.

- Identify and prove critical invariants in kernel code
- This includes proving the correctness of context switches, privilege

escalations, etc.

- Add multiprocessor support to the x86 ISA model

25/27

Accessing Source Code + Documentation

The x86isa project is available under BSD 3-Clause
license as a part of the ACL2 Community Books project. AC L2

Gotohttps://github.com/acl2/acl2/
and see books/projects/x86isa/README for details.

Also, documentation and user’s manual is

available online at

www.Ccs.utexas.edu/users/moore/acl2/manuals/
current/manual/?topic=ACL2 X86I1SA

26/27

https://github.com/acl2/acl2/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____X86ISA

Highlights of this Talk

Compile-to and Build-to Specification

A formal, executable x86 ISA model

- Specification of low-level ISA features
- Handles non-determinism

Unified Model

- Simulator: Executable file readers & loaders; GDB-like mode for
dynamic instrumentation

- Reasoning Framework: ACL2 libraries to reason about x86 machine
code

User Manual
- Documentation

Open Source
- Available online

27/27

