
INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

A Tool for Simplifying ACL2 Definitions

Matt Kaufmann

The University of Texas at Austin

May 3, 2016

1/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

INTRODUCTION (1)

In this talk we present a tool for simplifying ACL2 definitions.

I Used in Kestrel MUSE project
I In the spirit of earlier ACL2 Workshop 2003 paper, A Tool

for Simplifying Files of ACL2 Definitions ...
... but the two tools don’t share any code.

I OUTLINE:
I What the tool does
I How the tool does it
I Some challenges, wrinkles, bells, and whistles

I’ll illustrate with examples.
Feel free to ask questions!

2/27

http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/kaufmann/paper.pdf
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/kaufmann/paper.pdf

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

WHAT THE TOOL DOES

Very simple running example for the first two sections of this
talk:

ACL2 !>(defun foo (x) (+ 1 1 x))
...
FOO

ACL2 !>(simplify-defun foo)
(DEFUN FOO$1 (X)

(DECLARE (XARGS :NORMALIZE NIL
:GUARD T
:VERIFY-GUARDS NIL))

(+ 2 X))
ACL2 !>

3/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

HOW THE TOOL DOES IT

Next we explore the events generated by simplify-defun.

We will focus mostly on how those events automate a proof
that the original and simplified functions are equal.

The next several slides show the following, and I’ll explain
them during the talk.

I Bird’s-eye view of it all (not really readable!)
I Outline view, focusing attention on key sub-events
I Some details about key sub-events

4/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

BIRD’S-EYE VIEW OF IT ALL
ACL2 !>(show-simplify-defun foo)
(PROGN
(ENCAPSULATE NIL (SET-INHIBIT-WARNINGS "theory")

(SET-IGNORE-OK T) (SET-IRRELEVANT-FORMALS-OK T)
(LOCAL (INSTALL-NOT-NORMALIZED FOO))
(DEFUN FOO$1 (X)

(DECLARE (XARGS :NORMALIZE NIL :GUARD T :VERIFY-GUARDS NIL))
(+ 2 X))

(LOCAL ; local proof details
(PROGN
(DEFCONST *FOO-RUNES* ...)
(DEFTHM FOO$1-BEFORE-VS-AFTER-0

(IMPLIES (AND)
(EQUAL (+ 1 1 X) (+ 2 X)))

:HINTS ... :RULE-CLASSES NIL)
(ENCAPSULATE (((FOO-COPY *) => *)) ...)
(DEFTHM FOO-IS-FOO-COPY

(EQUAL (FOO X) (FOO-COPY X))
:HINTS (("Goal" :IN-THEORY ’(FOO$NOT-NORMALIZED FOO-COPY-DEF)))
:RULE-CLASSES NIL)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)))

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...))

(TABLE TRANSFORMATION-TABLE ...)
(VALUE-TRIPLE ’(DEFUN FOO$1 (X)

(DECLARE (XARGS :NORMALIZE NIL :GUARD T :VERIFY-GUARDS NIL))
(+ 2 X))))

ACL2 !>

5/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

OUTLINE VIEW

(PROGN
(ENCAPSULATE NIL
... ; Preamble (set-ignore-ok etc.)
(DEFUN FOO$1 (X) ; Simplified definition
(DECLARE (XARGS ...))
(+ 2 X))

(LOCAL ; Proof of ‘‘BECOMES’’ lemma
(PROGN ...))
(DEFTHM FOO-BECOMES-FOO$1 ; ‘‘BECOMES’’ lemma
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)); We’ll ignore the rest:

(TABLE TRANSFORMATION-TABLE
...) ; For database (e.g., redundancy)

(VALUE-TRIPLE ; Value returned in the loop
’(DEFUN FOO$1 (X) (DECLARE (XARGS ...)) (+ 2 X))))

6/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PREAMBLE

(SET-INHIBIT-WARNINGS "theory")
(SET-IGNORE-OK T)
(SET-IRRELEVANT-FORMALS-OK T)
(LOCAL (INSTALL-NOT-NORMALIZED FOO))
(DEFUN FOO$1 (X) ; Simplified definition
(DECLARE (XARGS ...))
(+ 2 X))

(LOCAL ; Proof of ‘‘BECOMES’’ lemma
(PROGN ...))

(DEFTHM FOO-BECOMES-FOO$1 ; ‘‘BECOMES’’ lemma
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)

7/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

SIMPLIFIED DEFINITION

The expander (books/misc/expander.lisp) provides our
interface to the rewriter, to simplify the definition.

... ; Preamble (set-ignore-ok etc.)
(DEFUN FOO$1 (X) ; Simplified definition
(DECLARE (XARGS :NORMALIZE NIL

:GUARD T
:VERIFY-GUARDS NIL))

(+ 2 X))
(LOCAL ; Proof of ‘‘BECOMES’’ lemma
(PROGN ...))

(DEFTHM FOO-BECOMES-FOO$1 ; ‘‘BECOMES’’ lemma
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)

8/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

“BECOMES” LEMMA

... ; Preamble (set-ignore-ok etc.)
(DEFUN FOO$1 (X) ; Simplified definition
(DECLARE (XARGS ...))
(+ 2 X))

(LOCAL ; Proof of ‘‘BECOMES’’ lemma
(PROGN <proof_of_becomes-lemma>))

(DEFTHM FOO-BECOMES-FOO$1 ; redundant
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...))

Let’s look at <proof_of_becomes-lemma>.

9/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (1): OVERVIEW

(DEFCONST *FOO-RUNES* ...)
(DEFTHM FOO$1-BEFORE-VS-AFTER-0
(IMPLIES (AND)

(EQUAL (+ 1 1 X) (+ 2 X)))
:HINTS ... :RULE-CLASSES NIL)

(ENCAPSULATE (((FOO-COPY *) => *))
(LOCAL (DEFUN FOO-COPY (X)

(DECLARE (XARGS :NORMALIZE NIL))
(FOO X)))

(DEFTHM FOO-COPY-DEF
(EQUAL (FOO-COPY X)

(BINARY-+ ’1 (BINARY-+ ’1 X)))
:HINTS ... :RULE-CLASSES ...))

(DEFTHM FOO-IS-FOO-COPY
(EQUAL (FOO X) (FOO-COPY X))
:HINTS ... :RULE-CLASSES NIL)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)

10/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (2)

(DEFCONST *FOO-RUNES*
’((:REWRITE FOLD-CONSTS-IN-+)
(:EXECUTABLE-COUNTERPART BINARY-+)
(:DEFINITION SYNP)))

(DEFTHM FOO$1-BEFORE-VS-AFTER-0 ...)
(ENCAPSULATE (((FOO-COPY *) => *))

(LOCAL ...)
(DEFTHM FOO-COPY-DEF ...))

(DEFTHM FOO-IS-FOO-COPY
(EQUAL (FOO X) (FOO-COPY X))
:HINTS ... :RULE-CLASSES NIL)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)

11/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (3)
(DEFCONST *FOO-RUNES* ...)
(DEFTHM FOO$1-BEFORE-VS-AFTER-0
(IMPLIES (AND)

(EQUAL (+ 1 1 X) (+ 2 X)))
:HINTS
(("Goal" :IN-THEORY *FOO-RUNES* :EXPAND NIL))

:RULE-CLASSES NIL)
(ENCAPSULATE (((FOO-COPY *) => *))
(LOCAL ...)
(DEFTHM FOO-COPY-DEF ...))

(DEFTHM FOO-IS-FOO-COPY
(EQUAL (FOO X) (FOO-COPY X))
:HINTS ... :RULE-CLASSES NIL)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)

12/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (4)
(DEFCONST *FOO-RUNES* ...)
(DEFTHM FOO$1-BEFORE-VS-AFTER-0

... (EQUAL (+ 1 1 X) (+ 2 X)) ...)
(ENCAPSULATE (((FOO-COPY *) => *))
(LOCAL (DEFUN FOO-COPY (X)

(DECLARE (XARGS :NORMALIZE NIL))
(FOO X)))

(DEFTHM FOO-COPY-DEF
(EQUAL (FOO-COPY X)

(BINARY-+ ’1 (BINARY-+ ’1 X)))
:HINTS (("Goal"

:IN-THEORY ’((:D FOO-COPY))
:EXPAND ((FOO X))))

:RULE-CLASSES ((:DEFINITION :INSTALL-BODY T))))
(DEFTHM FOO-IS-FOO-COPY
(EQUAL (FOO X) (FOO-COPY X))
:HINTS ... :RULE-CLASSES NIL)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...)

13/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (5)
(DEFCONST *FOO-RUNES* ...)
(DEFTHM FOO$1-BEFORE-VS-AFTER-0

... (EQUAL (+ 1 1 X) (+ 2 X)) ...)
(ENCAPSULATE (((FOO-COPY *) => *))

(LOCAL (DEFUN FOO-COPY (X) ...))
(DEFTHM FOO-COPY-DEF
(EQUAL (FOO-COPY X)

(BINARY-+ ’1 (BINARY-+ ’1 X)))
:HINTS ... :RULE-CLASSES ...))

(DEFTHM FOO-IS-FOO-COPY
(EQUAL (FOO X) (FOO-COPY X))
:HINTS (("Goal" :IN-THEORY

’(FOO$NOT-NORMALIZED FOO-COPY-DEF)))
:RULE-CLASSES NIL)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS ...) 14/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (6)
(DEFCONST *FOO-RUNES* ...)
(DEFTHM FOO$1-BEFORE-VS-AFTER-0

... (EQUAL (+ 1 1 X) (+ 2 X)) ...)
(ENCAPSULATE (((FOO-COPY *) => *))
(LOCAL (DEFUN FOO-COPY (X) ...))
(DEFTHM FOO-COPY-DEF

(EQUAL (FOO-COPY X)
(BINARY-+ ’1 (BINARY-+ ’1 X))) ...))

(DEFTHM FOO-IS-FOO-COPY
(EQUAL (FOO X) (FOO-COPY X)) ...)

(DEFTHM FOO-BECOMES-FOO$1
(EQUAL (FOO X) (FOO$1 X))
:HINTS
(("Goal" ; Avoid induction in recursive case
:BY (:FUNCTIONAL-INSTANCE FOO-IS-FOO-COPY

(FOO-COPY FOO$1))
:IN-THEORY (THEORY ’MINIMAL-THEORY))
’(:USE (FOO$1-BEFORE-VS-AFTER-0 FOO$1))))

15/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (7)
The value of functional instantiation is more clear for a
recursive definition. Given

(defun bar (x)
(if (zp x)

0
(+ 1 1 (bar (+ -1 x)))))

— we generate:

(DEFTHM BAR-BECOMES-BAR$1
(EQUAL (BAR X) (BAR$1 X))
:HINTS
(("Goal"
:BY (:FUNCTIONAL-INSTANCE BAR-IS-BAR-COPY

(BAR-COPY BAR$1))
:IN-THEORY (THEORY ’MINIMAL-THEORY))
’(:USE (BAR$1-BEFORE-VS-AFTER-0 BAR$1))))

16/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

PROOF OF “BECOMES” LEMMA (8)
The :by hint works, so the proof proceeds as follows.
Goal’ ; bar$1 satisfies the definition of bar-copy
(EQUAL (BAR$1 X)

(IF (ZP X) 0 (+ 1 1 (BAR$1 (+ -1 X))))).

We augment the goal with the hypotheses provided by the :USE hint.
These hypotheses can be obtained from BAR$1-BEFORE-VS-AFTER-0 and
BAR$1. We are left with the following subgoal.

Goal’’
(IMPLIES
(AND (IMPLIES ; use bar$1-before-vs-after-0

T
(EQUAL (IF (ZP X) 0 (+ 1 1 (BAR$1 (+ -1 X))))

(IF (ZP X) 0 (+ 2 (BAR$1 (+ -1 X))))))
(EQUAL (BAR$1 X) ; use bar$1

(IF (ZP X) 0 (+ 2 (BAR$1 (+ -1 X))))))
(EQUAL (BAR$1 X)

(IF (ZP X) 0 (+ 1 1 (BAR$1 (+ -1 X)))))).

But we reduce the conjecture to T, by primitive type reasoning.

17/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

SOME SOME CHALLENGES, WRINKLES, BELLS, AND

WHISTLES

Next we look at a few interesting aspects of simplify-defun.
We’ll do the following.

I Consider some challenges and how they were overcome.
I Skim the documentation.
I Look at some of the many knobs to turn.

Let’s start by looking at some challenges and their solutions.

18/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

New general features developed for MUSE are in color.

prove termination appeal to previous function’s unnor-
malized body (install-not-normalized)
and :termination-theorem

verify guards appeal to the previous function’s
:guard-theorem

support
assumptions

require a proof that assumptions are
preserved on recursive calls

preserve structure use directed-untranslate
use context simplify and flatten assumptions and

governing IF tests
suppress output turn off warnings; return and print

only the new definition
ease debugging show-simplify-defun, :verbose t
control patterns, hints, . . .
support redundancy use a table
automate reasoning functional instantiation, theories, . . .

19/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

DOCUMENTATION

Let’s skim the documentation.

Now we focus our attention on some of the many knobs to turn.

20/27

http://www.cs.utexas.edu/users/moore/acl2/seminar/2016.05.03-kaufmann/simplify-defun-doc-page.pdf

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

DOCUMENTATION

Let’s skim the documentation.

Now we focus our attention on some of the many knobs to turn.

20/27

http://www.cs.utexas.edu/users/moore/acl2/seminar/2016.05.03-kaufmann/simplify-defun-doc-page.pdf

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

REUSE FOR GUARDS, MEASURES, AND THEIR PROOFS
ACL2 !>(defun bar (x)

(declare (xargs :guard (natp x)))
(if (zp x) 0 (+ 1 1 (bar (+ -1 x)))))

...
ACL2 !>(simplify-defun bar)
(DEFUN BAR$1 (X)
(DECLARE
(XARGS
:NORMALIZE NIL
:GUARD (NATP X)
:MEASURE (ACL2-COUNT X)
:VERIFY-GUARDS T
:GUARD-HINTS
(("Goal" :USE (:GUARD-THEOREM BAR)))
:HINTS
(("Goal" :USE (:TERMINATION-THEOREM BAR)))))

(IF (ZP X) 0 (+ 2 (BAR$1 (+ -1 X)))))
ACL2 !>

21/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

SIMPLIFYING UNDER ASSUMPTIONS (1)

ACL2 !>(defun f (x)
(declare (xargs :guard (true-listp x)))
(if (consp x)

(f (cdr x))
x))

...
ACL2 !>(simplify-defun f :assumptions :guard)
(DEFUN F$1 (X)

(DECLARE (XARGS ...))
(IF (CONSP X) (F$1 (CDR X)) NIL))

ACL2 !>

Note that we get the same result from the following; the use of
:assumptions :guard is just a handy shortcut.

(simplify-defun f :assumptions ’((true-listp x)))

22/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

SIMPLIFYING UNDER ASSUMPTIONS (2)
The generated events are a bit more complicated when the
keyword :assumptions is provided.
For example, in the following we see use of the
:guard-theorem because :assumptions :guard was
specified.

(DEFUN F-HYPS (X)
(TRUE-LISTP X))

(DEFTHM F-HYPS-PRESERVED-FOR-F
(IMPLIES (AND (F-HYPS X) (CONSP X))

(F-HYPS (CDR X)))
:HINTS (("Goal"

:EXPAND ((:FREE (X) (F-HYPS X)))
:USE (:GUARD-THEOREM F)))

:RULE-CLASSES NIL)

23/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

OBTAINING PRETTY RESULTS
We use
books/kestrel/system/directed-untranslate.lisp:
ACL2 !>(defun f3 (x y)
(implies (car (cons x x)) (not y)))

...
ACL2 !>(trace$ directed-untranslate)
((DIRECTED-UNTRANSLATE))

ACL2 !>(simplify-defun f3)
1> (DIRECTED-UNTRANSLATE (IMPLIES (CAR (CONS X X)) (NOT Y))

(IMPLIES (CAR (CONS X X)) (NOT Y))
(IF X (IF Y ’NIL ’T) ’T)
NIL |current-acl2-world|)

<1 (DIRECTED-UNTRANSLATE (IMPLIES X (NOT Y)))
(DEFUN F3$1 (X Y)

(DECLARE (XARGS ...))
(IMPLIES X (NOT Y)))

ACL2 !> 24/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

SIMPLIFYING SUBTERMS

ACL2 !>(defun h (x)
(list (+ 1 1 x)

(and (integerp x) (+ 2 -2 x))
(+ 3 -3 x)
(+ 4 4 x)))

...
ACL2 !>(simplify-defun h

:simplify-body
(list @ (and _ @) @ _))

(DEFUN H$1 (X)
(DECLARE (XARGS ...))
(LIST (+ 2 X)

(AND (INTEGERP X) X)
(IF (ACL2-NUMBERP X) X 0)
(+ 4 4 X)))

ACL2 !> 25/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

ADDITIONAL OPTIONS FOR:

I hints, including theory control
I specifying the new function name
I providing a measure
I specifying enable status for resulting events
I simplifying the measure and/or guard
I controlling guard verification
I untranslating in full (instead of using
directed-untranslate)

More options may come; demand-driven!
Not discussed here, but analogous: simplify-defun-sk.

26/27

INTRODUCTION WHAT THE TOOL DOES HOW THE TOOL DOES IT CHALLENGES/WRINKLES/BELLS/WHISTLES CONCLUSION

CONCLUSION

The simplify-defun tool is being used in the Kestrel MUSE
project.

Additional enhancements are planned, including support for
mutual recursion and for transforming a non-recursive
function to a recursive function.

Its implementation (another talk?) may give clues on how to
write other tools that manipulate ACL2 events.

I’m hoping that simplify-defun will be made publicly
available.

27/27

	Introduction
	What the tool does
	How the tool does it
	Challenges/wrinkles/bells/whistles
	Conclusion

