
An Overview of the DE Hardware Description Language
and Its Application in Formal Verification of the FM9001

Microprocessor

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science

The University of Texas at Austin

September 22, 2016

Cuong Chau (UT Austin) The DE Language September 22, 2016 1 / 28

mailto:ckcuong@cs.utexas.edu


Outline

1 Introduction

2 The DE Language

3 Verifying Circuit Designs Using the DE Verification System

4 FM9001 Microprocessor Verification

5 Future Work

Cuong Chau (UT Austin) The DE Language September 22, 2016 2 / 28



Outline

1 Introduction

2 The DE Language

3 Verifying Circuit Designs Using the DE Verification System

4 FM9001 Microprocessor Verification

5 Future Work

Cuong Chau (UT Austin) The DE Language September 22, 2016 3 / 28



Introduction

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

DE has shown to be a valuable tool in formal specification and verification
of modern hardware designs [W. Hunt & E. Reeber, 2006].

In this talk, I will give an overview of the DE language, illustrate how to
use it to formally specify and verify circuit designs via simple examples,
and finally briefly describe its application in the FM9001 microprocessor
verification.

Cuong Chau (UT Austin) The DE Language September 22, 2016 4 / 28



Introduction

DE is a formal occurrence-oriented description language that permits the
hierarchical definition of finite-state machines in the style of a hardware
description language [W. Hunt, 2000].

DE has shown to be a valuable tool in formal specification and verification
of modern hardware designs [W. Hunt & E. Reeber, 2006].

In this talk, I will give an overview of the DE language, illustrate how to
use it to formally specify and verify circuit designs via simple examples,
and finally briefly describe its application in the FM9001 microprocessor
verification.

Cuong Chau (UT Austin) The DE Language September 22, 2016 4 / 28



Outline

1 Introduction

2 The DE Language

3 Verifying Circuit Designs Using the DE Verification System

4 FM9001 Microprocessor Verification

5 Future Work

Cuong Chau (UT Austin) The DE Language September 22, 2016 5 / 28



The DE Language

DE is a hierarchical, occurrence-oriented simulator for Mealy machines. It
allows hierarchical module definition, and multiple copies of a module are
identified by reference (their appearance in an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) The DE Language September 22, 2016 6 / 28



The DE Language

DE is a hierarchical, occurrence-oriented simulator for Mealy machines. It
allows hierarchical module definition, and multiple copies of a module are
identified by reference (their appearance in an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) The DE Language September 22, 2016 6 / 28



The DE Language

DE is a hierarchical, occurrence-oriented simulator for Mealy machines. It
allows hierarchical module definition, and multiple copies of a module are
identified by reference (their appearance in an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) The DE Language September 22, 2016 6 / 28



The DE Language

DE is a hierarchical, occurrence-oriented simulator for Mealy machines. It
allows hierarchical module definition, and multiple copies of a module are
identified by reference (their appearance in an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) The DE Language September 22, 2016 6 / 28



Half-Adder

(defconst *half-adder*
’((half-adder ;; module name

(a b) ;; module inputs
(sum carry) ;; module outputs
() ;; internal states
;; occurrences

((g0 ;; occurrence name
(sum) ;; occurrence outputs
b-xor ;; a primitive reference
(a b)) ;; occurrence inputs

(g1 (carry) b-and (a b))))))

Cuong Chau (UT Austin) The DE Language September 22, 2016 7 / 28



The DE Primitive Database

The evaluation of a DE netlist eventually results in the interpretation of
primitives, which are specified in the DE primitive database.

Logic gates: AND, OR, NOT, XOR,...
State-holding primitives: latches, flip-flops,...

Cuong Chau (UT Austin) The DE Language September 22, 2016 8 / 28



Full-Adder

Cuong Chau (UT Austin) The DE Language September 22, 2016 9 / 28



Full-Adder

(defconst *full-adder*
(cons
’(full-adder

(a b c)
(sum carry)
()
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) b-or (carry1 carry2))))

*half-adder*))

Cuong Chau (UT Austin) The DE Language September 22, 2016 10 / 28



One-Bit Counter

Cuong Chau (UT Austin) The DE Language September 22, 2016 11 / 28



One-Bit Counter

(defconst *one-bit-counter*
(cons
’(one-bit-counter

(clk carry-in reset-)
(out carry)
(g0)
((g0 (out out˜) fd1 (clk sum-reset-))
(g1 (sum carry) half-adder (carry-in out))
(g2 (sum-reset-) b-and (sum reset-))))

*half-adder*))

Cuong Chau (UT Austin) The DE Language September 22, 2016 12 / 28



Four-Bit Counter

Cuong Chau (UT Austin) The DE Language September 22, 2016 13 / 28



Four-Bit Counter

(defconst *four-bit-counter*
(cons
’(four-bit-counter

(clk incr reset-)
(out0 out1 out2 out3)
(h0 h1 h2 h3)
((h0 (out0 carry0) one-bit-counter (clk incr reset-))
(h1 (out1 carry1) one-bit-counter (clk carry0 reset-))
(h2 (out2 carry2) one-bit-counter (clk carry1 reset-))
(h3 (out3 carry3) one-bit-counter (clk carry2 reset-))
))

*one-bit-counter*))

Cuong Chau (UT Austin) The DE Language September 22, 2016 14 / 28



The DE Simulator

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
outputs and next state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in a module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in a module.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 15 / 28



The DE Simulator

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
outputs and next state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in a module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in a module.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 15 / 28



The DE Simulator

The semantics of the DE language is given by a simulator that, given the
current inputs and current state for a module, will compute the module’s
outputs and next state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in a module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in a module.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 15 / 28



Outline

1 Introduction

2 The DE Language

3 Verifying Circuit Designs Using the DE Verification System

4 FM9001 Microprocessor Verification

5 Future Work

Cuong Chau (UT Austin) The DE Language September 22, 2016 16 / 28



Verifying DE-Specified Circuits

Each time a module is specified, there are two lemmas need to be proven:
a value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational), only the
value lemma needs to be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 17 / 28



Verifying DE-Specified Circuits

Each time a module is specified, there are two lemmas need to be proven:
a value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational), only the
value lemma needs to be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 17 / 28



Verifying DE-Specified Circuits

Each time a module is specified, there are two lemmas need to be proven:
a value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational), only the
value lemma needs to be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 17 / 28



Verifying DE-Specified Circuits

Each time a module is specified, there are two lemmas need to be proven:
a value lemma specifying the module’s outputs and a state lemma
specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational), only the
value lemma needs to be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 17 / 28



Circuit Generator Verification

The DE verification system can be applied to verify circuit generators.
Example: proving the correctness of a parameterized ripple-carry adder.

(defun v-adder (c a b)
(declare (xargs :guard (and (true-listp a)

(true-listp b))))
;; c is a bit, a and b are bit-vectors of some length n;
;; this function returns a bit vector of length n+1.

(if (atom a)
(list (bool-fix c))

(cons (b-xor3 c (car a) (car b))
(v-adder (b-or3 (b-and (car a) (car b))

(b-and (car a) c)
(b-and (car b) c))

(cdr a)
(cdr b)))))

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 18 / 28



Circuit Generator Verification

The DE verification system can be applied to verify circuit generators.
Example: proving the correctness of a parameterized ripple-carry adder.

(defun v-adder (c a b)
(declare (xargs :guard (and (true-listp a)

(true-listp b))))
;; c is a bit, a and b are bit-vectors of some length n;
;; this function returns a bit vector of length n+1.

(if (atom a)
(list (bool-fix c))

(cons (b-xor3 c (car a) (car b))
(v-adder (b-or3 (b-and (car a) (car b))

(b-and (car a) c)
(b-and (car b) c))

(cdr a)
(cdr b)))))

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 18 / 28



Circuit Generator Verification

The DE verification system can be applied to verify circuit generators.
Example: proving the correctness of a parameterized ripple-carry adder.

(defun v-adder (c a b)
(declare (xargs :guard (and (true-listp a)

(true-listp b))))
;; c is a bit, a and b are bit-vectors of some length n;
;; this function returns a bit vector of length n+1.

(if (atom a)
(list (bool-fix c))

(cons (b-xor3 c (car a) (car b))
(v-adder (b-or3 (b-and (car a) (car b))

(b-and (car a) c)
(b-and (car b) c))

(cdr a)
(cdr b)))))

Demo.

Cuong Chau (UT Austin) The DE Language September 22, 2016 18 / 28



Outline

1 Introduction

2 The DE Language

3 Verifying Circuit Designs Using the DE Verification System

4 FM9001 Microprocessor Verification

5 Future Work

Cuong Chau (UT Austin) The DE Language September 22, 2016 19 / 28



FM9001 Microprocessor

The FM9001 is a general-purpose 32-bit microprocessor whose gate-level
netlist was specified using the DUAL-EVAL hardware description
language [B. Brock & W. Hunt, 1997].

The correctness of the FM9001 gate-level design was verified using the
NQTHM theorem-proving system [B. Brock & W. Hunt, 1997].

We have been re-specifying and re-verifying the correctness of the FM9001
design using the ACL2-based DE system.

Cuong Chau (UT Austin) The DE Language September 22, 2016 20 / 28



FM9001 Microprocessor

The FM9001 is a general-purpose 32-bit microprocessor whose gate-level
netlist was specified using the DUAL-EVAL hardware description
language [B. Brock & W. Hunt, 1997].

The correctness of the FM9001 gate-level design was verified using the
NQTHM theorem-proving system [B. Brock & W. Hunt, 1997].

We have been re-specifying and re-verifying the correctness of the FM9001
design using the ACL2-based DE system.

Cuong Chau (UT Austin) The DE Language September 22, 2016 20 / 28



FM9001 Specification Levels

Cuong Chau (UT Austin) The DE Language September 22, 2016 21 / 28



FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, by a suitable
sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Our result so far: proved that given a set of initial conditions, the
gate-level model correctly implements the register-transfer model.

Cuong Chau (UT Austin) The DE Language September 22, 2016 22 / 28



FM9001 Verification

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas:

1 The FM9001 can be forced to a known state, i.e., reset, by a suitable
sequence of inputs.

2 Given a set of initial conditions, the gate-level model correctly
implements the high-level instruction interpreter.

3 The state at the end of the reset sequence satisfies the initial
conditions for the previous lemma.

Our result so far: proved that given a set of initial conditions, the
gate-level model correctly implements the register-transfer model.

Cuong Chau (UT Austin) The DE Language September 22, 2016 22 / 28



Block Diagram of the FM9001

Cuong Chau (UT Austin) The DE Language September 22, 2016 23 / 28



The NEXT-CNTL-STATE module

Cuong Chau (UT Austin) The DE Language September 22, 2016 24 / 28



Outline

1 Introduction

2 The DE Language

3 Verifying Circuit Designs Using the DE Verification System

4 FM9001 Microprocessor Verification

5 Future Work

Cuong Chau (UT Austin) The DE Language September 22, 2016 25 / 28



Future Work

Finish the proof of correctness of the FM9001 gate-level design, i.e., the
three major lemmas mentioned earlier.

Specify and verify the correctness of the FM9001 using the
asynchronous-circuit-oriented formalization.

No global clock signal.
Local communication protocols, e.g., the link-joint
interface [M. Roncken et al., 2015].
Non-deterministic behavior due to uncertain but bounded delays on
wires and gates.
...

Cuong Chau (UT Austin) The DE Language September 22, 2016 26 / 28



Future Work

Finish the proof of correctness of the FM9001 gate-level design, i.e., the
three major lemmas mentioned earlier.

Specify and verify the correctness of the FM9001 using the
asynchronous-circuit-oriented formalization.

No global clock signal.
Local communication protocols, e.g., the link-joint
interface [M. Roncken et al., 2015].
Non-deterministic behavior due to uncertain but bounded delays on
wires and gates.
...

Cuong Chau (UT Austin) The DE Language September 22, 2016 26 / 28



References

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

W. Hunt & E. Reeber (2006)
Applications of the DE2 Language
The 6th International Workshop on Designing Correct Circuits (DCC 2006),
Vienna, Austria.

B. Brock & W. Hunt (1997)
The DUAL-EVAL Hardware Description Language and Its Use in the Formal
Specification and Verification of the FM9001 Microprocessor
Formal Methods in System Design, 11, 71 – 104.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

Cuong Chau (UT Austin) The DE Language September 22, 2016 27 / 28



Questions?

Cuong Chau (UT Austin) The DE Language September 22, 2016 28 / 28


	Introduction
	The DE Language
	Verifying Circuit Designs Using the DE Verification System
	FM9001 Microprocessor Verification
	Future Work

