
A DE Verification Framework for Asynchronous Circuit
Verification

Cuong Chau
ckcuong@cs.utexas.edu

Department of Computer Science

The University of Texas at Austin

January 27, 2017

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 1 / 32

mailto:ckcuong@cs.utexas.edu


Outline

1 Introduction

2 The DE Verification System

3 Modeling and Verifying Asynchronous Circuits Using the DE System

4 Asynchronous Serial Adder Verification

5 Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 2 / 32



Outline

1 Introduction

2 The DE Verification System

3 Modeling and Verifying Asynchronous Circuits Using the DE System

4 Asynchronous Serial Adder Verification

5 Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 3 / 32



Introduction

Synchronous circuits (Clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (Self-timed circuits): there is no global clock signal
distributed in asynchronous circuits. The communication between
components is performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Better composability and modularity,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 4 / 32



Introduction

Synchronous circuits (Clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (Self-timed circuits): there is no global clock signal
distributed in asynchronous circuits. The communication between
components is performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Better composability and modularity,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 4 / 32



Introduction

Synchronous circuits (Clocked circuits): changes in the state of storage
elements are synchronized by a global clock signal.

Asynchronous circuits (Self-timed circuits): there is no global clock signal
distributed in asynchronous circuits. The communication between
components is performed via local communication protocols.

Why asynchronous?

Low power consumption,
High operating speed,
Better composability and modularity,
...

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 4 / 32



Introduction

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.

The DE verification system [W. Hunt, 2000].

Developing new approaches for modeling and verifying asynchronous
systems in ACL2. Dealing with:

no global clock signal,
local communication protocols,
non-deterministic behavior due to variable delays in wires and gates.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 5 / 32



Introduction

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE verification system [W. Hunt, 2000].

Developing new approaches for modeling and verifying asynchronous
systems in ACL2. Dealing with:

no global clock signal,
local communication protocols,
non-deterministic behavior due to variable delays in wires and gates.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 5 / 32



Introduction

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE verification system [W. Hunt, 2000].

Developing new approaches for modeling and verifying asynchronous
systems in ACL2. Dealing with:

no global clock signal,

local communication protocols,
non-deterministic behavior due to variable delays in wires and gates.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 5 / 32



Introduction

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE verification system [W. Hunt, 2000].

Developing new approaches for modeling and verifying asynchronous
systems in ACL2. Dealing with:

no global clock signal,
local communication protocols,

non-deterministic behavior due to variable delays in wires and gates.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 5 / 32



Introduction

Our goal: developing a comprehensive verification strategy for verifying
asynchronous systems in ACL2.

Leveraging existing work in the clocked design paradigm.
The DE verification system [W. Hunt, 2000].

Developing new approaches for modeling and verifying asynchronous
systems in ACL2. Dealing with:

no global clock signal,
local communication protocols,
non-deterministic behavior due to variable delays in wires and gates.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 5 / 32



Outline

1 Introduction

2 The DE Verification System

3 Modeling and Verifying Asynchronous Circuits Using the DE System

4 Asynchronous Serial Adder Verification

5 Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 6 / 32



The DE Language

DE is a formal occurrence-oriented hardware description language for
describing Mealy machines. It allows hierarchical module definition, and
multiple copies of a module are identified by reference (their appearance in
an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 7 / 32



The DE Language

DE is a formal occurrence-oriented hardware description language for
describing Mealy machines. It allows hierarchical module definition, and
multiple copies of a module are identified by reference (their appearance in
an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 7 / 32



The DE Language

DE is a formal occurrence-oriented hardware description language for
describing Mealy machines. It allows hierarchical module definition, and
multiple copies of a module are identified by reference (their appearance in
an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 7 / 32



The DE Language

DE is a formal occurrence-oriented hardware description language for
describing Mealy machines. It allows hierarchical module definition, and
multiple copies of a module are identified by reference (their appearance in
an occurrence).

A DE description is an ACL2 constant containing an ordered list of
modules, which we call a netlist.

Each module consists of five elements: a netlist-unique module name,
inputs, outputs, internal states, and occurrences.

Each occurrence consists of four elements: a module-unique occurrence
name, outputs, a reference to a primitive or defined module, and
inputs.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 7 / 32



Half-Adder

(defconst *half-adder*
’((half-adder ;; module name

(a b) ;; module inputs
(sum carry) ;; module outputs
() ;; internal states
;; occurrences

((g0 ;; occurrence name
(sum) ;; occurrence outputs
b-xor ;; a primitive reference
(a b)) ;; occurrence inputs

(g1 (carry) b-and (a b))))))

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 8 / 32



The DE Primitive Database

The evaluation of a DE netlist eventually results in the interpretation of
primitives, which are specified in the DE primitive database.

Logic gates: AND, OR, NOT, XOR,...
State-holding primitives: latches, flip-flops,...

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 9 / 32



Full-Adder

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 10 / 32



Full-Adder

(defconst *full-adder*
(cons
’(full-adder

(a b c)
(sum carry)
()
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) b-or (carry1 carry2))))

*half-adder*))

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 11 / 32



One-Bit Counter

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 12 / 32



One-Bit Counter

(defconst *one-bit-counter*
(cons
’(one-bit-counter

(clk carry-in reset-)
(out carry)
(g0)
((g0 (out out˜) fd1 (clk sum-reset-))
(g1 (sum carry) half-adder (carry-in out))
(g2 (sum-reset-) b-and (sum reset-))))

*half-adder*))

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 13 / 32



The DE Simulator

Semantics of the DE language: a simulator computing module’s outputs
and next state, given current inputs and current state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in the module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in the module.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 14 / 32



The DE Simulator

Semantics of the DE language: a simulator computing module’s outputs
and next state, given current inputs and current state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state.

The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in the module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in the module.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 14 / 32



The DE Simulator

Semantics of the DE language: a simulator computing module’s outputs
and next state, given current inputs and current state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in the module.

The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in the module.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 14 / 32



The DE Simulator

Semantics of the DE language: a simulator computing module’s outputs
and next state, given current inputs and current state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in the module.
The de function computes the next state of a module being
evaluated given its inputs and its current state.

The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in the module.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 14 / 32



The DE Simulator

Semantics of the DE language: a simulator computing module’s outputs
and next state, given current inputs and current state.

The DE simulator is composed of two sets of mutually recursive functions.

The se function computes the outputs of a module being evaluated
given its inputs and its current state. The se-occ function, which is
mutually recursive with se, iteratively computes the outputs of each
occurrence declared in the module.
The de function computes the next state of a module being
evaluated given its inputs and its current state. The de-occ function,
which is mutually recursive with de, iteratively computes the (possibly
empty) next state of each occurrence declared in the module.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 14 / 32



The DE Verification System

The DE verification system supports hierarchical verification:

Prove two lemmas for each module: a value lemma specifying the
module’s outputs and a state lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma needs to be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

This approach has been demonstrated its scalability to large systems, as
shown on contemporary x86 designs at Centaur Technology
[A. Slobodova et al., 2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 15 / 32



The DE Verification System

The DE verification system supports hierarchical verification:
Prove two lemmas for each module: a value lemma specifying the
module’s outputs and a state lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma needs to be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

This approach has been demonstrated its scalability to large systems, as
shown on contemporary x86 designs at Centaur Technology
[A. Slobodova et al., 2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 15 / 32



The DE Verification System

The DE verification system supports hierarchical verification:
Prove two lemmas for each module: a value lemma specifying the
module’s outputs and a state lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma needs to be proven.

These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

This approach has been demonstrated its scalability to large systems, as
shown on contemporary x86 designs at Centaur Technology
[A. Slobodova et al., 2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 15 / 32



The DE Verification System

The DE verification system supports hierarchical verification:
Prove two lemmas for each module: a value lemma specifying the
module’s outputs and a state lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma needs to be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

This approach has been demonstrated its scalability to large systems, as
shown on contemporary x86 designs at Centaur Technology
[A. Slobodova et al., 2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 15 / 32



The DE Verification System

The DE verification system supports hierarchical verification:
Prove two lemmas for each module: a value lemma specifying the
module’s outputs and a state lemma specifying the module’s next state.

If a module doesn’t have an internal state (purely combinational),
only the value lemma needs to be proven.
These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details
about the submodules.

This approach has been demonstrated its scalability to large systems, as
shown on contemporary x86 designs at Centaur Technology
[A. Slobodova et al., 2011].

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 15 / 32



Outline

1 Introduction

2 The DE Verification System

3 Modeling and Verifying Asynchronous Circuits Using the DE System

4 Asynchronous Serial Adder Verification

5 Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 16 / 32



Modeling

No global clock signal

⇒ Every state-holding device is governed by its own clock signal.

Local communication protocols

⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015].

Non-deterministic behavior

⇒ Employing an oracle.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 17 / 32



Modeling

No global clock signal
⇒ Every state-holding device is governed by its own clock signal.
Local communication protocols

⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015].

Non-deterministic behavior

⇒ Employing an oracle.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 17 / 32



Modeling

No global clock signal
⇒ Every state-holding device is governed by its own clock signal.
Local communication protocols
⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015].
Non-deterministic behavior

⇒ Employing an oracle.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 17 / 32



Modeling

No global clock signal
⇒ Every state-holding device is governed by its own clock signal.
Local communication protocols
⇒ Modeling the link-joint interface introduced by Roncken et
al. [M. Roncken et al., 2015].
Non-deterministic behavior
⇒ Employing an oracle.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 17 / 32



The Link-Joint Interface

D0

S0

in

Comb. Logic

drain

fill

clk
D1

S1

out

L0 L1

GO

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 18 / 32



The Link-Joint Interface

D0

S0

in

Comb. Logic

drain

fill

clk
D1

S1

out

L0 L1

GO

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 18 / 32



Verification

Hierarchical verification is still applicable and critical to asynchronous
circuit verification.

Asynchronous modules are treated as communication links that
communicate with each other via local communication protocols.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 19 / 32



Verification

Hierarchical verification is still applicable and critical to asynchronous
circuit verification.

Asynchronous modules are treated as communication links that
communicate with each other via local communication protocols.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 19 / 32



Async Modules vs. Primitive Links

Communication status:
Async modules: full,
empty, both full and empty,
not ready (neither full nor
empty).
Primitive links: either full
or empty.

Communication signals:
Async modules use sepa-
rate incoming and outgoing
communication signals.
Primitive links only need
one signal for both incom-
ing and outgoing communi-
cations.

D0

S0

D1

S1

Comb. Logic

D2

S2

D3

S3

D4

S4

E- F

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 20 / 32



Async Modules vs. Primitive Links

Communication status:
Async modules: full,
empty, both full and empty,
not ready (neither full nor
empty).
Primitive links: either full
or empty.

Communication signals:
Async modules use sepa-
rate incoming and outgoing
communication signals.
Primitive links only need
one signal for both incom-
ing and outgoing communi-
cations.

D0

S0

D1

S1

Comb. Logic

D2

S2

D3

S3

D4

S4

E- F

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 20 / 32



Async Modules vs. Primitive Links

Communication status:
Async modules: full,
empty, both full and empty,
not ready (neither full nor
empty).
Primitive links: either full
or empty.

Communication signals:
Async modules use sepa-
rate incoming and outgoing
communication signals.
Primitive links only need
one signal for both incom-
ing and outgoing communi-
cations.

D0

S0

D1

S1

Comb. Logic

D2

S2

D3

S3

D4

S4

E- F

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 20 / 32



Dealing with Non-determinism

Non-deterministic behavior in asynchronous circuits makes the verification
task much more challenging than in synchronous circuits.

Computing invariance properties in asynchronous systems becomes
much more complicated and less systematic.
Non-determinism results in asynchronous circuits having a large state
space.

Simplifying the verification task by reducing non-determinism, and
consequently reducing the state space.

Imposing extra sequential dependencies among operations in
asynchronous circuits. In particular, a module is ready to
communicate with other modules only if it finishes all of its internal
operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 21 / 32



Dealing with Non-determinism

Non-deterministic behavior in asynchronous circuits makes the verification
task much more challenging than in synchronous circuits.

Computing invariance properties in asynchronous systems becomes
much more complicated and less systematic.

Non-determinism results in asynchronous circuits having a large state
space.

Simplifying the verification task by reducing non-determinism, and
consequently reducing the state space.

Imposing extra sequential dependencies among operations in
asynchronous circuits. In particular, a module is ready to
communicate with other modules only if it finishes all of its internal
operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 21 / 32



Dealing with Non-determinism

Non-deterministic behavior in asynchronous circuits makes the verification
task much more challenging than in synchronous circuits.

Computing invariance properties in asynchronous systems becomes
much more complicated and less systematic.
Non-determinism results in asynchronous circuits having a large state
space.

Simplifying the verification task by reducing non-determinism, and
consequently reducing the state space.

Imposing extra sequential dependencies among operations in
asynchronous circuits. In particular, a module is ready to
communicate with other modules only if it finishes all of its internal
operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 21 / 32



Dealing with Non-determinism

Non-deterministic behavior in asynchronous circuits makes the verification
task much more challenging than in synchronous circuits.

Computing invariance properties in asynchronous systems becomes
much more complicated and less systematic.
Non-determinism results in asynchronous circuits having a large state
space.

Simplifying the verification task by reducing non-determinism, and
consequently reducing the state space.

Imposing extra sequential dependencies among operations in
asynchronous circuits. In particular, a module is ready to
communicate with other modules only if it finishes all of its internal
operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 21 / 32



Dealing with Non-determinism

Non-deterministic behavior in asynchronous circuits makes the verification
task much more challenging than in synchronous circuits.

Computing invariance properties in asynchronous systems becomes
much more complicated and less systematic.
Non-determinism results in asynchronous circuits having a large state
space.

Simplifying the verification task by reducing non-determinism, and
consequently reducing the state space.

Imposing extra sequential dependencies among operations in
asynchronous circuits.

In particular, a module is ready to
communicate with other modules only if it finishes all of its internal
operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 21 / 32



Dealing with Non-determinism

Non-deterministic behavior in asynchronous circuits makes the verification
task much more challenging than in synchronous circuits.

Computing invariance properties in asynchronous systems becomes
much more complicated and less systematic.
Non-determinism results in asynchronous circuits having a large state
space.

Simplifying the verification task by reducing non-determinism, and
consequently reducing the state space.

Imposing extra sequential dependencies among operations in
asynchronous circuits. In particular, a module is ready to
communicate with other modules only if it finishes all of its internal
operations and becomes quiescent.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 21 / 32



Outline

1 Introduction

2 The DE Verification System

3 Modeling and Verifying Asynchronous Circuits Using the DE System

4 Asynchronous Serial Adder Verification

5 Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 22 / 32



Serial Adder

Reg0

Reg1

Ci

A

B

1-Bit-Adder

Co

S Reg2 Buf

ResultNext-Cntl-State

Cntl-StateCntl-State’ Done- 01

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 23 / 32



Ripple-Carry Adder

Reg0

Reg1

Ci

Ripple-Carry-Adder Result

Goal: Given an appropriate initial condition, prove that the asynchronous
serial adder produces the same result with the ripple-carry adder.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 24 / 32



Ripple-Carry Adder

Reg0

Reg1

Ci

Ripple-Carry-Adder Result

Goal: Given an appropriate initial condition, prove that the asynchronous
serial adder produces the same result with the ripple-carry adder.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 24 / 32



Serial Adder

Reg0

Reg1

Ci

A

B

1-Bit-Adder

Co

S Reg2 Buf

ResultNext-Cntl-State

Cntl-StateCntl-State’ Done- 01

M1

M2

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 25 / 32



Serial Adder

Reg0

Reg1

Ci

A

B

1-Bit-Adder

Co

S Reg2 Buf

ResultNext-Cntl-State

Cntl-StateCntl-State’ Done- 01

M1

M2

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 25 / 32



Serial Adder

Reg0

Reg1

Ci

A

B

1-Bit-Adder

Co

S Reg2 Buf

ResultNext-Cntl-State

Cntl-StateCntl-State’ Done- 01

M1

M2

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 25 / 32



Serial Adder

Reg0

Reg1

Ci

A

B

1-Bit-Adder

Co

S Reg2 Buf

ResultNext-Cntl-State

Cntl-StateCntl-State’ Done- 01

M1

M2

go-a

go-b

go-buf-cntl

go-cntl

go-add

go-carry

go-s

go-result

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 25 / 32



Dependency

go-a

go-b
go-add go-carry go-s

go-buf-cntl
go-cntl

go-a

go-b
go-add go-carry go-s go-result

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 26 / 32



Dependency

go-a

go-b
go-add go-carry go-s

go-buf-cntl
go-cntl

go-a

go-b
go-add go-carry go-s go-result

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 26 / 32



Interleaving Example

Inputs = ((... go-a0 go-b0) (... go-a1 go-b1) ...)

(go-a go-b) ⇒ ((... T F) (... go-a1 T) ...)

(go-b go-a) ⇒ ((... F T) (... T go-b1) ...)

((go-a go-b)) ⇒ ((... T T) ...)

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 27 / 32



Interleaving Example

Inputs = ((... go-a0 go-b0) (... go-a1 go-b1) ...)

(go-a go-b) ⇒ ((... T F) (... go-a1 T) ...)

(go-b go-a) ⇒ ((... F T) (... T go-b1) ...)

((go-a go-b)) ⇒ ((... T T) ...)

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 27 / 32



Interleaving Example

Inputs = ((... go-a0 go-b0) (... go-a1 go-b1) ...)

(go-a go-b) ⇒ ((... T F) (... go-a1 T) ...)

(go-b go-a) ⇒ ((... F T) (... T go-b1) ...)

((go-a go-b)) ⇒ ((... T T) ...)

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 27 / 32



Interleaving Example

Inputs = ((... go-a0 go-b0) (... go-a1 go-b1) ...)

(go-a go-b) ⇒ ((... T F) (... go-a1 T) ...)

(go-b go-a) ⇒ ((... F T) (... T go-b1) ...)

((go-a go-b)) ⇒ ((... T T) ...)

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 27 / 32



Outline

1 Introduction

2 The DE Verification System

3 Modeling and Verifying Asynchronous Circuits Using the DE System

4 Asynchronous Serial Adder Verification

5 Conclusions

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 28 / 32



Conclusions

We have presented our framework for modeling and verifying asynchronous
circuits using the DE system.

Hierarchical verification is critical to circuit verification.

Reasoning with highly non-deterministic behavior is burdensome to
asynchronous circuit verification.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 29 / 32



References

W. Hunt (2000)
The DE Language
Computer-Aided Reasoning: ACL2 Case Studies, Kluwer Academic Publishers
Norwell, MA, USA, 151 – 166.

W. Hunt & E. Reeber (2006)
Applications of the DE2 Language
DCC 2006, Vienna, Austria.

B. Brock & W. Hunt (1997)
The DUAL-EVAL Hardware Description Language and Its Use in the Formal
Specification and Verification of the FM9001 Microprocessor
Formal Methods in System Design, 11, 71 – 104.

M. Roncken, S. Gilla, H. Park, N. Jamadagni, C. Cowan, I. Sutherland (2015)
Naturalized Communication and Testing
ASYNC 2015, 77 – 84.

A. Slobodova, J. Davis, S. Swords, and W. Hunt (2011)
A Flexible Formal Verification Framework for Industrial Scale Validation
MEMOCODE 2011, 89 – 97.

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 30 / 32



PhD Plan

Phase 1: Pick a topic

Phase 2: ?

Phase 3: Defend

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 31 / 32



Questions?

Cuong Chau (UT Austin) Asynchronous Circuit Verification January 27, 2017 32 / 32


	Introduction
	The DE Verification System
	Modeling and Verifying Asynchronous Circuits Using the DE System
	Asynchronous Serial Adder Verification
	Conclusions

